Abstract
Aspirin-exacerbated respiratory disease is a tetrad of nasal polyps, chronic hypertrophic eosinophilic sinusitis, asthma, and sensitivity to aspirin. Unawareness of this clinical condition by patients and physicians may have grave consequences because of its association with near-fatal asthma. The pathogenesis of aspirin-intolerant asthma is not related with an immunoglobin E mechanism, but with an abnormal metabolism of the lipoxygenase (LO) and cyclooxygenase (COX) pathways. At present, a diagnosis of aspirin sensitivity can be established only by provocative aspirin challenge, which represents a health risk for the patient. This circumstance has encouraged the search for aspirin intolerance-specific biomarkers. Major attempts have focused on mediators related with inflammation and eicosanoid regulation. The use of modern laboratory techniques including high-throughput methods has facilitated the detection of dozens of biological metabolites associated with aspirin-intolerant asthma disease. Not surprisingly, the majority of these is implicated in the LO and COX pathways. However, substantial amounts of data reveal the participation of many genes deriving from different ontologies. Biomarkers may represent a powerful, noninvasive tool in the diagnosis of aspirin sensitivity; moreover, they could provide a new way to classify asthma phenotypes.
Similar content being viewed by others
References
Pfaar O, Klimek L (2006) Eicosanoids, aspirin-intolerance and the upper airways—current standards and recent improvements of the desensitization therapy. J Physiol Pharmacol 57(Suppl 12):5–13
Samter M, Beers RF Jr (1968) Intolerance to aspirin. Clinical studies and consideration of its pathogenesis. Ann Intern Med 68:975–983
Lee RU, Stevenson DD (2011) Aspirin-exacerbated respiratory disease: evaluation and management. Allergy Asthma Immunol Res 3:3–10
Laitinen LA, Laitinen A, Haahtela T (1993) Airway mucosal inflammation even in patients with newly diagnosed asthma. Am Rev Respir Dis 147:697–704
Szczeklik A (1992) Aspirin-induced asthma: pathogenesis and clinical presentation. Allergy Proc 13:163–173
Babu KS, Salvi SS (2000) Aspirin and asthma. Chest 118:1470–1476
Szczeklik A, Stevenson DD (2003) Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol 111:913–921
Kim SH, Hur GY, Choi JH, Park HS (2008) Pharmacogenetics of aspirin-intolerant asthma. Pharmacogenomics 9:85–91
Palikhe NS, Kim SH, Park HS (2008) What do we know about the genetics of aspirin intolerance? J Clin Pharm Ther 33:465–472
Balsinde J, Winstead MV, Dennis EA (2002) Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett 531:2–6
Schievella AR, Regier MK, Smith WL, Lin LL (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 270:30749–30754
van der Donk WA, Tsai AL, Kulmacz RJ (2002) The cyclooxygenase reaction mechanism. Biochemistry 41:15451–15458
Smith HS (2006) Arachidonic acid pathways in nociception. J Support Oncol 4:277–287
Coleman RA, Smith WL, Narumiya S (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229
Kennedy I, Coleman RA, Humphrey PP, Levy GP, Lumley P (1982) Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins 24:667–689
Narumiya S, FitzGerald GA (2001) Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 108:25–30
Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261
Monneret G, Gravel S, Diamond M, Rokach J, Powell WS (2001) Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood 98:1942–1948
Vancheri C, Mastruzzo C, Sortino MA, Crimi N (2004) The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol 25:40–46
Kolodsick JE, Peters-Golden M, Larios J, Toews GB, Thannickal VJ, Moore BB (2003) Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 29:537–544
Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667
Kowalski ML, Pawliczak R, Wozniak J, Siuda K, Poniatowska M, Iwaszkiewicz J, Kornatowski T, Kaliner MA (2000) Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. Am J Respir Crit Care Med 161:391–398
Swierczynska M, Nizankowska-Mogilnicka E, Zarychta J, Gielicz A, Szczeklik A (2003) Nasal versus bronchial and nasal response to oral aspirin challenge: clinical and biochemical differences between patients with aspirin-induced asthma/rhinitis. J Allergy Clin Immunol 112:995–1001
Mastalerz L, Sanak M, Gawlewicz-Mroczka A, Gielicz A, Cmiel A, Szczeklik A (2008) Prostaglandin E2 systemic production in patients with asthma with and without aspirin hypersensitivity. Thorax 63:27–34
Ferreri NR, Howland WC, Stevenson DD, Spiegelberg HL (1988) Release of leukotrienes, prostaglandins, and histamine into nasal secretions of aspirin-sensitive asthmatics during reaction to aspirin. Am Rev Respir Dis 137:847–854
Picado C, Ramis I, Rosello J, Prat J, Bulbena O, Plaza V, Montserrat JM, Gelpi E (1992) Release of peptide leukotriene into nasal secretions after local instillation of aspirin in aspirin-sensitive asthmatic patients. Am Rev Respir Dis 145:65–69
Sanak M, Kielbasa B, Bochenek G, Szczeklik A (2004) Exhaled eicosanoids following oral aspirin challenge in asthmatic patients. Clin Exp Allergy 34:1899–1904
Sladek K, Dworski R, Soja J, Sheller JR, Nizankowska E, Oates JA, Szczeklik A (1994) Eicosanoids in bronchoalveolar lavage fluid of aspirin-intolerant patients with asthma after aspirin challenge. Am J Respir Crit Care Med 149:940–946
Sanak M, Gielicz A, Bochenek G, Kaszuba M, Nizankowska-Mogilnicka E, Szczeklik A (2011) Targeted eicosanoid lipidomics of exhaled breath condensate provide a distinct pattern in the aspirin-intolerant asthma phenotype. J Allergy Clin Immunol 127:1141–1147
Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357:1841–1854
Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH (2006) Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. J Allergy Clin Immunol 117:312–318
Sousa A, Pfister R, Christie PE, Lane SJ, Nasser SM, Schmitz-Schumann M, Lee TH (1997) Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax 52:940–945
Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST, Sampson AP (1998) Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101:834–846
Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF, Lam BK, Austen KF, Cazaly AM, Wilson SJ, Sampson AP (2006) Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 209:392–399
Picado C, Fernandez-Morata JC, Juan M, Roca-Ferrer J, Fuentes M, Xaubet A, Mullol J (1999) Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med 160:291–296
Gronert K, Clish CB, Romano M, Serhan CN (1999) Transcellular regulation of eicosanoid biosynthesis. Methods Mol Biol 120:119–144
Dahlen SE, Hedqvist P, Hammarstrom S, Samuelsson B (1980) Leukotrienes are potent constrictors of human bronchi. Nature 288:484–486
Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, Arm JP, Lee TH (1991) Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 143:1025–1029
Szczeklik A, Sladek K, Dworski R, Nizankowska E, Soja J, Sheller J, Oates J (1996) Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am J Respir Crit Care Med 154:1608–1614
Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T (2005) Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J Allergy Clin Immunol 115:316–322
Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH (2002) Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med 347:1493–1499
Cai Y, Bjermer L, Halstensen TS (2003) Bronchial mast cells are the dominating LTC4S-expressing cells in aspirin-tolerant asthma. Am J Respir Cell Mol Biol 29:683–693
Perez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C (2005) Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol 115:1189–1196
Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A (2000) Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 23:290–296
Gaber F, Daham K, Higashi A, Higashi N, Gulich A, Delin I, James A, Skedinger M, Gyllfors P, Nord M, Dahlen SE, Kumlin M, Dahlen B (2008) Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax 63:1076–1082
Ono E, Taniguchi M, Higashi N, Mita H, Yamaguchi H, Tatsuno S, Fukutomi Y, Tanimoto H, Sekiya K, Oshikata C, Tsuburai T, Tsurikisawa N, Otomo M, Maeda Y, Hasegawa M, Miyazaki E, Kumamoto T, Akiyama K (2011) Increase in salivary cysteinyl-leukotriene concentration in patients with aspirin-intolerant asthma. Allergol Int 60:37–43
Christie PE, Tagari P, Ford-Hutchinson AW, Black C, Markendorf A, Schmitz-Schumann M, Lee TH (1992) Urinary leukotriene E4 after lysine-aspirin inhalation in asthmatic subjects. Am Rev Respir Dis 146:1531–1534
Mastalerz L, Sanak M, Szczeklik A (2001) Serum interleukin-5 in aspirin-induced asthma. Clin Exp Allergy 31:1036–1040
Hills JM, Sellers AJ, Mistry J, Broekman M, Howson W (1991) Phosphinic acid analogues of GABA are antagonists at the GABAB receptor in the rat anococcygeus. Br J Pharmacol 102:5–6
Farooque SP, Lee TH (2009) Aspirin-sensitive respiratory disease. Annu Rev Physiol 71:465–487
Romano M (2010) Lipoxin and aspirin-triggered lipoxins. Sci World J 10:1048–1064
Ryan A, Godson C (2010) Lipoxins: regulators of resolution. Curr Opin Pharmacol 10:166–172
Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137
Stables MJ, Gilroy DW (2011) Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 50:35–51
Sanak M, Levy BD, Clish CB, Chiang N, Gronert K, Mastalerz L, Serhan CN, Szczeklik A (2000) Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur Respir J 16:44–49
Celik GE, Erkekol FO, Misirligil Z, Melli M (2007) Lipoxin A4 levels in asthma: relation with disease severity and aspirin sensitivity. Clin Exp Allergy 37:1494–1501
Serhan CN (2008) Systems approach with inflammatory exudates uncovers novel anti-inflammatory and pro-resolving mediators. Prostaglandins Leukot Essent Fatty Acids 79:157–163
Aoki H, Hisada T, Ishizuka T, Utsugi M, Kawata T, Shimizu Y, Okajima F, Dobashi K, Mori M (2008) Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem Biophys Res Commun 367:509–515
Aoki H, Hisada T, Ishizuka T, Utsugi M, Ono A, Koga Y, Sunaga N, Nakakura T, Okajima F, Dobashi K, Mori M (2010) Protective effect of resolvin E1 on the development of asthmatic airway inflammation. Biochem Biophys Res Commun 400:128–133
Bilal S, Haworth O, Wu L, Weylandt KH, Levy BD, Kang JX (2011) Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochim Biophys Acta 1812:1164–1169
Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD (2008) Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol 9:873–879
Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10:838–848
Velazquez JR, Teran LM (2011) Chemokines and their receptors in the allergic airway inflammatory process. Clin Rev Allergy Immunol 41:76–88
Dahlen B, Kumlin M, Margolskee DJ, Larsson C, Blomqvist H, Williams VC, Zetterstrom O, Dahlen SE (1993) The leukotriene-receptor antagonist MK-0679 blocks airway obstruction induced by inhaled lysine-aspirin in aspirin-sensitive asthmatics. Eur Respir J 6:1018–1026
Nasser S, Christie PE, Pfister R, Sousa AR, Walls A, Schmitz-Schumann M, Lee TH (1996) Effect of endobronchial aspirin challenge on inflammatory cells in bronchial biopsy samples from aspirin-sensitive asthmatic subjects. Thorax 51:64–70
Zhang MQ, Timmerman H (1997) Mast cell tryptase and asthma. Mediators Inflamm 6:311–317
Katial RK, Strand M, Prasertsuntarasai T, Leung R, Zheng W, Alam R (2010) The effect of aspirin desensitization on novel biomarkers in aspirin-exacerbated respiratory diseases. J Allergy Clin Immunol 126:738–744
Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Rubin P, Cohn J, White MV, Igarashi Y, Kaliner MA, Drazen JM (1994) Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 94:1046–1056
Bosso JV, Schwartz LB, Stevenson DD (1991) Tryptase and histamine release during aspirin-induced respiratory reactions. J Allergy Clin Immunol 88:830–837
Bochenek G, Nagraba K, Nizankowska E, Szczeklik A (2003) A controlled study of 9alpha,11beta-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge. J Allergy Clin Immunol 111:743–749
Celik GE, Schroeder JT, Hamilton RG, Saini SS, Adkinson NF (2009) Effect of in vitro aspirin stimulation on basophils in patients with aspirin-exacerbated respiratory disease. Clin Exp Allergy 39:1522–1531
Nasser SM, Pfister R, Christie PE, Sousa AR, Barker J, Schmitz-Schumann M, Lee TH (1996) Inflammatory cell populations in bronchial biopsies from aspirin-sensitive asthmatic subjects. Am J Respir Crit Care Med 153:90–96
Sousa AR, Lams BE, Pfister R, Christie PE, Schmitz M, Lee TH (1997) Expression of interleukin-5 and granulocyte-macrophage colony-stimulating factor in aspirin-sensitive and non-aspirin-sensitive asthmatic airways. Am J Respir Crit Care Med 156:1384–1389
Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160:1001–1008
Wenzel SE (2009) Eosinophils in asthma—closing the loop or opening the door? N Engl J Med 360:1026–1028
Varga EM, Jacobson MR, Masuyama K, Rak S, Till SJ, Darby Y, Hamid Q, Lund V, Scadding GK, Durham SR (1999) Inflammatory cell populations and cytokine mRNA expression in the nasal mucosa in aspirin-sensitive rhinitis. Eur Respir J 14:610–615
Kupczyk M, Kurmanowska Z, Kuprys-Lipinska I, Bochenska-Marciniak M, Kuna P (2010) Mediators of inflammation in nasal lavage from aspirin intolerant patients after aspirin challenge. Respir Med 104:1404–1409
Bachert C, Claeys SE, Tomassen P, van Zele T, Zhang N (2010) Rhinosinusitis and asthma: a link for asthma severity. Curr Allergy Asthma Rep 10:194–201
Perez Novo CA, Jedrzejczak-Czechowicz M, Lewandowska-Polak A, Claeys C, Holtappels G, Van Cauwenberge P, Kowalski ML, Bachert C (2010) T cell inflammatory response, Foxp3 and TNFRS18-L regulation of peripheral blood mononuclear cells from patients with nasal polyps-asthma after staphylococcal superantigen stimulation. Clin Exp Allergy 40:1323–1332
Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244
Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959
Picado C, Bioque G, Roca-Ferrer J, Pujols L, Mullol J, Benitez P, Bulbena O (2003) Nuclear factor-kappaB activity is down-regulated in nasal polyps from aspirin-sensitive asthmatics. Allergy 58:122–126
Mortaz E, Redegeld FA, Nijkamp FP, Engels F (2005) Dual effects of acetylsalicylic acid on mast cell degranulation, expression of cyclooxygenase-2 and release of pro-inflammatory cytokines. Biochem Pharmacol 69:1049–1057
Aeberhard EE, Henderson SA, Arabolos NS, Griscavage JM, Castro FE, Barrett CT, Ignarro LJ (1995) Nonsteroidal anti-inflammatory drugs inhibit expression of the inducible nitric oxide synthase gene. Biochem Biophys Res Commun 208:1053–1059
Cianferoni A, Schroeder JT, Kim J, Schmidt JW, Lichtenstein LM, Georas SN, Casolaro V (2001) Selective inhibition of interleukin-4 gene expression in human T cells by aspirin. Blood 97:1742–1749
Perez G, Melo M, Keegan AD, Zamorano J (2002) Aspirin and salicylates inhibit the IL-4- and IL-13-induced activation of STAT6. J Immunol 168:1428–1434
Steinke JW, Culp JA, Kropf E, Borish L (2009) Modulation by aspirin of nuclear phospho-signal transducer and activator of transcription 6 expression: possible role in therapeutic benefit associated with aspirin desensitization. J Allergy Clin Immunol 124:724–730
Choi S, Park HS, Cheon MS, Lee K (2005) Expression profile analysis of human peripheral blood mononuclear cells in response to aspirin. Arch Immunol Ther Exp (Warsz) 53:151–158
Devouassoux G, Pachot A, Laforest L, Diasparra J, Freymond N, Van Ganse E, Mougin B, Pacheco Y (2008) Galectin-10 mRNA is overexpressed in peripheral blood of aspirin-induced asthma. Allergy 63:125–131
Shin S, Park JS, Kim YJ, Oh T, An S, Park CS (2012) Differential gene expression profile in PBMCs from subjects with AERD and ATA: a gene marker for AERD. Mol Genet Genomics 287:361–371
Sekigawa T, Tajima A, Hasegawa T, Hasegawa Y, Inoue H, Sano Y, Matsune S, Kurono Y, Inoue I (2009) Gene-expression profiles in human nasal polyp tissues and identification of genetic susceptibility in aspirin-intolerant asthma. Clin Exp Allergy 39:972–981
Schroecksnadel K, Frick B, Winkler C, Wirleitner B, Schennach H, Fuchs D (2005) Aspirin downregulates homocysteine formation in stimulated human peripheral blood mononuclear cells. Scand J Immunol 62:155–160
Colotta F, Re F, Muzio M, Bertini R, Polentarutti N, Sironi M, Giri JG, Dower SK, Sims JE, Mantovani A (1993) Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261:472–475
Porreca E, Reale M, Di FC, Di GM, Barbacane RC, Castellani ML, Baccante G, Conti P, Cuccurullo F (1996) Down-regulation of cyclooxygenase-2 (COX-2) by interleukin-1 receptor antagonist in human monocytes. Immunology 89:424–429
Stankovic KM, Goldsztein H, Reh DD, Platt MP, Metson R (2008) Gene expression profiling of nasal polyps associated with chronic sinusitis and aspirin-sensitive asthma. Laryngoscope 118:881–889
Zander KA, Saavedra MT, West J, Scapa V, Sanders L, Kingdom TT (2009) Protein microarray analysis of nasal polyps from aspirin-sensitive and aspirin-tolerant patients with chronic rhinosinusitis. Am J Rhinol Allergy 23:268–272
Cheong HS, Park SM, Kim MO, Park JS, Lee JY, Byun JY, Park BL, Shin HD, Park CS (2011) Genome-wide methylation profile of nasal polyps: relation to aspirin hypersensitivity in asthmatics. Allergy 66:637–644
Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368:804–813
Moon HG, Tae YM, Kim YS, Gyu JS, Oh SY, Song GY, Zhu Z, Kim YK (2010) Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 65:1093–1103
Acknowledgments
This work was supported by the Mexican National Council of Science and Technology (CONACyT-México) grant no. 160489. The style review of the manuscript by Maggie Brunner, M.A., is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Velazquez, J.R., Teran, L.M. Aspirin-Intolerant Asthma: A Comprehensive Review of Biomarkers and Pathophysiology. Clinic Rev Allerg Immunol 45, 75–86 (2013). https://doi.org/10.1007/s12016-012-8340-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12016-012-8340-0