Zusammenfassung
Benigne notochordale Tumoren (BNCT) und Chordome sind primäre intraossäre Tumoren, die entlang des Achsenskeletts entstehen und ihre höchste Inzidenz im Sakrum, gefolgt vom Clivus und den thorakalen Wirbelkörpern haben. Neben der klassischen Variante (NOS [„not otherwise specified“] mit hepatoider und nierenzellkarzinom-ähnlichen Varianten) sind eine chondroide Differenzierung sowie Chordome mit polymorpher bis anaplastischer Morphologie beschrieben. Besonders ungünstige Formen sind pädiatrische Chordome mit typischem INI1-Verlust. BNCT und Chordome sind charakterisiert durch folgendes immunhistologisches Profil: Vimentin+, Breitbandzytokeratin+/−, epitheliales membranes Antigen (EMA)+/−, S100-Protein+/+, Brachyury+ und lassen sich so immunhistologisch eindeutig definieren und abgrenzen von Chondrosarkomen, chordoiden Meningiomen und Karzinommetastasen.
Abstract
Benign notochordal tumors (BNCT) and chordomas are primary bone tumors of the spine with a predominant localization in the sacrum and clival region followed by the vertebral bodies. Besides the most common variant (NOS [not otherwise specified] with hepatoid or renal carcinoma cell-like differentiation) chordomas with chondroid, and polymorphic to anaplastic morphology are described. An unfavorable variant are pediatric chordomas with a loss of INI-1. BNCT and chordomas are characterized by the following immunohistological profile: vimentin+, cytokeratin+/−, epithelial membrane antigen (EMA)+/−, S100 protein+/−, brachyury+. This profile helps to distinguish these tumors from other lesions such as chondrosarcoma, chordoid meningioma, and metastases of carcinoma.
Literatur
Bergh P, Kindblom LG, Gunterberg B et al (2000) Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer 88:2122–2134
Brüderlein S, Sommer JB, Meltzer PS et al (2010) Molecular characterization of putative chordoma cell lines. Sarcoma 2010:1–14
Choudhri O, Feroze A, Hwang P et al (2014) Endoscopic resection of a giant intradural retroclival ecchordosis physaliphora: surgical technique and literature review. World Neurosurg 82(912):e21–26. https://doi.org/10.1016/j.wneu.2014.06.019
Dobrovolskaia-Zavadskaia N (1927) C R Soc Biol 97:114–116
Flanagan AM, Yamaguchi T (2013) Chordoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Hrsg) World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon, S 328–329
Flanagan AM, Yamaguchi T (2013) Chordoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (eds) WHO Classification of Tumors and Soft Tissue and Bones. IRAC, Lyon, p 328–329
Freyschmidt J, Ostertag H, Jundt G (2010) Knochentumoren mit Kiefertumoren. Springer, Berlin, Heidelberg, S 722–738
Hasselblatt M, Thomas C, Hovestadt V et al (2016) Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathol 132:149–151. https://doi.org/10.1007/s00401-016-1574-9
Herrmann BG, Kispert A (1994) The T genes in embryogenesis. Trends Genet 10(8):280–286
Herrmann BG, Labeit S, Poustka A et al (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343:617–622. https://doi.org/10.1038/343617a0
Horbinski C, Oakley GJ, Cieply K et al (2010) The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Arch Pathol Lab Med 134:1170–1176
Hsu W, Mohyeldin A, Shah SR et al (2011) Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J Neurosurg 115:760–769
Joshi VV (2000) Peripheral neuroblastic tumors: pathologic classification based on recommendations of international neuroblastoma pathology committee (Modification of shimada classification). Pediatr Dev Pathol 3:184–199
Kyriakos M (2011) Benign notochordal lesions of the axial skeleton: a review and current appraisal. Skelet Radiol 40(9):1141–1152
Mehnert F, Beschorner R, Küker W et al (2004) Retroclival ecchordosis physaliphora: MR imaging and review of the literature. AJNR Am J Neuroradiol 25:1851–1855
Miettinen M, Wang Z, Lasota J et al (2015) Nuclear Brachyury expression is consistent in chordoma, common in germ cell tumors and small cell carcinomas, and rare in other carcinomas and sarcomas: an immunohistochemical study of 5229 cases. Am J Surg Pathol 39:1305–1312. https://doi.org/10.1097/PAS.0000000000000462
Mirra JM, Brien EW (2001) Giant notochordal hamartoma of intraosseous origin: a newly reported benign entity to be distinguished from chordoma. Report of two cases. Skeletal Radiol 30:698–709. https://doi.org/10.1007/s002560100422
Mobley BC, McKenney JK, Bangs CD et al (2010) Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol 120:745–753. https://doi.org/10.1007/s00401-010-0767-x
Müller H (1858) Ueber das Vorkommen von Resten der Chorda dorsalis bei Menschen nach der Geburt und ueber ihr Verhältnis zu den Gallertgeschwulsten am Clivus. Z Rat Med 2:202
Naka T, Boltze C, Kuester D et al (2005) Intralesional fibrous septum in chordoma: a clinicopathologic and immunohistochemical study of 122 lesions. Am J Clin Pathol 124:288–294
Nelson AC, Pillay N, Henderson S et al (2012) An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J Pathol 228:274–285. https://doi.org/10.1002/path.4082
Oakley GJ, Fuhrer K, Seethala RR (2008) Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Mod Pathol 21:1461–1469. https://doi.org/10.1038/modpathol.2008.144
Ramesh T, Nagula SV, Tardieu GG et al (2017) Update on the notochord including its embryology, molecular development, and pathology: a primer for the clinician. Cureus. https://doi.org/10.7759/cureus.1137
Rinner B, Froehlich EV, Buerger K et al (2012) Establishment and detailed functional and molecular genetic characterisation of a novel sacral chordoma cell line, MUG-Chor1. Int J Oncol 40:443–451
Rotondo M, Natale M, Mirone G et al (2007) A rare symptomatic presentation of ecchordosis physaliphora: neuroradiological and surgical management. J Neurol Neurosurg Psychiatr 78:647–649. https://doi.org/10.1136/jnnp.2006.109561
Salisbury JR, Deverell MH, Cookson MJ, Whimster WF (1993) Three-dimensional reconstruction of human embryonic notochords: clue to the pathogenesis of chordoma. J Pathol 171:59–62. https://doi.org/10.1002/path.1711710112
Scheil S, Brüderlein S, Liehr T et al (2001) Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U‑CH1. Genes Chromosomes Cancer 32:203–211
Shen J, Li C‑D, Yang H‑L et al (2011) Classic chordoma coexisting with benign notochordal cell rest demonstrating different immunohistological expression patterns of brachyury and galectin-3. J Clin Neurosci 18:96–99. https://doi.org/10.1016/j.jocn.2010.03.066
Showell C, Binder O, Conlon FL (2004) T‑box genes in early embryogenesis. Dev Dyn 229:201–218. https://doi.org/10.1002/dvdy.10480
Singhal N, Kotasek D, Parnis FX (2009) Response to erlotinib in a patient with treatment refractory chordoma. Anticancer Drugs 20:953–955
Stacchiotti S, Tamborini E, Lo VS et al (2013) Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol 24:1931–1936
Stacchiotti S, Gronchi A, Fossati P et al (2017) Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol 28:1230–1242. https://doi.org/10.1093/annonc/mdx054
Virchow R (1857) Untersuchungen ueber die Entwicklung des Schaedelgrundes im gesunden und krankhaften Zustande und über den Einfluss derselben auf Schädelform, Gesichtsbildung und Gehirnbau. G Rimer, Berlin
Vujovic S, Henderson S, Presneau N et al (2006) Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 209:157–165
von Witzleben A, Goerttler LT, Lennerz J et al (2015) In chordoma, metastasis, recurrences, Ki-67 index, and a matrix-poor phenotype are associated with patients’ shorter overall survival. Eur Spine J. https://doi.org/10.1007/s00586-015-4242-1
von Witzlebena A, Goerttler LT, Marienfeld R et al (2015) Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell cycle pathway. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-3270
Yamaguchi T, Yamato M, Saotome K (2002) First histologically confirmed case of a classic chordoma arising in a precursor benign notochordal lesion: differential diagnosis of benign and malignant notochordal lesions. Skeletal Radiol 31:413–418. https://doi.org/10.1007/s00256-002-0514-z
Yamaguchi T, Suzuki S, Ishiiwa H, Ueda Y (2004) Intraosseous benign notochordal cell tumours: overlooked precursors of classic chordomas? Histopathology 44:597–602. https://doi.org/10.1111/j.1365-2559.2004.01877.x
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
T. F. E. Barth, A. von Witzleben, P. Möller und S. Scheil-Bertram geben an, dass kein Interessenkonflikt besteht.
Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.
Additional information
Redaktion
H. A. Baba, Essen
Rights and permissions
About this article
Cite this article
Barth, T.F.E., von Witzleben, A., Möller, P. et al. Notochordale Tumoren. Pathologe 39, 117–124 (2018). https://doi.org/10.1007/s00292-017-0399-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00292-017-0399-1