Abstract
The inflammatory milieu favors recruitment and activation of osteoclasts, and leads to bone destruction as a serious complication associated with arthritis and with other inflammatory processes. The frequency and activity of osteoclast progenitors (OCPs) correspond to arthritis severity, and may be used to monitor disease progression and bone resorption, indicating the need for detailed characterization of the discrete OCP subpopulations. Collectively, current studies suggest that the most potent murine bone marrow OCP population can be identified among lymphoid negative population within the immature myeloid lineage cells, as B220−CD3−CD11b–/loCD115+CD117+CX3CR1+ and possibly also Ter119−CD11c−CD135loLy6C+RANK−. In peripheral blood the OCP population bears the monocytoid phenotype B220−CD3−NK1.1−CD11b+Ly6ChiCD115+CX3CR1+, presumably expressing RANK in committed OCPs. Much less is known about human OCPs and their regulation in arthritis, but the circulating OCP subset is, most probably, comprised among the lymphoid negative population (CD3−CD19−CD56−), within immature monocyte subset (CD11b+CD14+CD16−), expressing receptors for M-CSF and RANKL (CD115+RANK+). Our preliminary data confirmed positive association between the proportion of peripheral blood OCPs, defined as CD3−CD19−CD56−CD11b+CD14+, and the disease activity score (DAS28) in the follow-up samples from patients with psoriatic arthritis receiving anti-TNF therapy. In addition, we reviewed cytokines and chemokines which, directly or indirectly, activate OCPs and enhance their differentiation potential, thus mediating osteoresorption. Control of the activity and migratory behaviour of OCPs as well as the identification of crucial bone/joint chemotactic mediators represent promising therapeutic targets in arthritis.
Similar content being viewed by others
References
Goldring SR, Purdue PE, Crotti TN, Shen Z, Flannery MR, Binder NB, Ross FP, McHugh KP (2013) Bone remodelling in inflammatory arthritis. Ann Rheum Dis 72(Suppl 2):ii52–ii55. doi:10.1136/annrheumdis-2012-202199
Schett G (2009) Osteoimmunology in rheumatic diseases. Arthritis Res Ther 11(1):210. doi:10.1186/ar2571
Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5(12):667–676. doi:10.1038/nrrheum.2009.217
Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233(1):301–312. doi:10.1111/j.0105-2896.2009.00857.x
Braun T, Zwerina J (2011) Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res Ther 13(4):235. doi:10.1186/ar3380
Zhao B, Ivashkiv LB (2011) Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther 13(4):234. doi:10.1186/ar3379
Souza PP, Lerner UH (2013) The role of cytokines in inflammatory bone loss. Immunol Investig 42(7):555–622. doi:10.3109/08820139.2013.822766
Komatsu N, Takayanagi H (2012) Autoimmune arthritis: the interface between the immune system and joints. Adv Immunol 115:45–71. doi:10.1016/B978-0-12-394299-9.00002-3
Deal C (2012) Bone loss in rheumatoid arthritis: systemic, periarticular, and focal. Curr Rheumatol Rep 14(3):231–237. doi:10.1007/s11926-012-0253-7
Del Fattore A, Teti A, Rucci N (2012) Bone cells and the mechanisms of bone remodelling. Front Biosci (Elite Ed) 4:2302–2321
Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255. doi:10.1111/j.0105-2896.2009.00859.x
Kinne RW, Stuhlmüller B, Burmester GR (2007) Cells of the synovium in rheumatoid arthritis. Macrophages Arthritis Res Ther 9(6):224
Finzel S, Englbrecht M, Engelke K, Stach C, Schett G (2011) A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann Rheum Dis 70(1):122–127. doi:10.1136/ard.2010.132423
Schett G (2009) Bone marrow edema. Ann N Y Acad Sci 1154:35–40. doi:10.1111/j.1749-6632.2009.04383.x
Choi Y, Arron JR, Townsend MJ (2009) Promising bone-related therapeutic targets for rheumatoid arthritis. Nat Rev Rheumatol 5(10):543–548. doi:10.1038/nrrheum.2009.175
Corrado A, Neve A, Maruotti N, Cantatore FP (2013) Bone effects of biologic drugs in rheumatoid arthritis. Clin Dev Immunol 2013:945945. doi:10.1155/2013/945945
Haynes DR (2007) Inflammatory cells and bone loss in rheumatoid arthritis. Arthritis Res Ther 9(3):104. doi:10.1186/ar2213
Le Goff B, Berthelot JM, Maugars Y, Heymann D (2013) Osteoclasts in RA: diverse origins and functions. Joint Bone Spine 80(6):586–591. doi:10.1016/j.jbspin.2013.04.002
Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139. doi:10.1002/jcb.21553
Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. doi:10.1016/j.abb.2008.03.018
Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29(4):403–440. doi:10.1210/er.2007-0038
Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190(12):1741–1754
Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40(2):251–264. doi:10.1016/j.bone.2006.09.023
Nakashima T, Takayanagi H (2011) New regulation mechanisms of osteoclast differentiation. Ann NY Acad Sci 1240:E13–E18. doi:10.1111/j.1749-6632.2011.06373.x
Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH, So MW, Lee CK, Robinson WH, Chang EJ (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14(1):R14. doi:10.1186/ar3693
Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20(2):177–184. doi:10.1359/jbmr.041114
Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98(8):2544–2554
Jacquin C, Gran DE, Lee SK, Lorenzo JA, Aguila HL (2006) Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res 21(1):67–77. doi:10.1359/JBMR.051007
Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2011) Parathyroid hormone regulates the distribution and osteoclastogenic potential of hematopoietic progenitors in the bone marrow. J Bone Miner Res 26(6):1207–1216. doi:10.1002/jbmr.324
Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2013) Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28(5):1203–1213. doi:10.1002/jbmr.1822
Xiao Y, Song JY, de Vries TJ, Fatmawati C, Parreira DB, Langenbach GE, Babala N, Nolte MA, Everts V, Borst J (2013) Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells. Proc Natl Acad Sci USA 110(30):12385–12390. doi:10.1073/pnas.1216082110
Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281(17):11846–11855. doi:10.1074/jbc.M512624200
Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605. doi:10.1172/jci60920
Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, Ponnazhagan S (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73(2):672–682. doi:10.1158/0008-5472.can-12-2202
Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N (2011) Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26(12):2978–2990. doi:10.1002/jbmr.490
Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554. doi:10.1083/jcb.200806139
De Klerck B, Carpentier I, Lories RJ, Habraken Y, Piette J, Carmeliet G, Beyaert R, Billiau A, Matthys P (2004) Enhanced osteoclast development in collagen-induced arthritis in interferon-gamma receptor knock-out mice as related to increased splenic CD11b + myelopoiesis. Arthritis Res Ther 6(3):R220–R231. doi:10.1186/ar1167
Brühl H, Cihak J, Plachý J, Kunz-Schughart L, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, Luckow B, Stangassinger M, Mack M (2007) Targeting of Gr-1+, CCR2+ monocytes in collagen-induced arthritis. Arthritis Rheum 56(9):2975–2985. doi:10.1002/art.22854
Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L (2004) Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum 50(1):265–276. doi:10.1002/art.11419
Szekanecz Z, Vegvari A, Szabo Z, Koch AE (2010) Chemokines and chemokine receptors in arthritis. Front Biosci (Schol Ed) 2:153–167
Galliera E, Locati M, Mantovani A, Corsi MM (2008) Chemokines and bone remodeling. Int J Immunopathol Pharmacol 21(3):485–491
Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, Nakayama T, Sakurai H, Takano Y, Nishimura M, Imai T, Yoshie O, Saiki I (2009) Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol 183(12):7825–7831. doi:10.4049/jimmunol.0803627
Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18(8):1404–1418. doi:10.1359/jbmr.2003.18.8.1404
Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82
Kotani M, Kikuta J, Klauschen F, Chino T, Kobayashi Y, Yasuda H, Tamai K, Miyawaki A, Kanagawa O, Tomura M, Ishii M (2013) Systemic circulation and bone recruitment of osteoclast precursors tracked by using fluorescent imaging techniques. J Immunol 190(2):605–612. doi:10.4049/jimmunol.1201345
Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther 8(5):R152. doi:10.1186/ar2046
Park-Min KH, Lee EY, Moskowitz NK, Lim E, Lee SK, Lorenzo JA, Huang C, Melnick AM, Purdue PE, Goldring SR, Ivashkiv LB (2013) Negative regulation of osteoclast precursor differentiation by CD11b and β2 integrin-B-cell lymphoma 6 signaling. J Bone Miner Res 28(1):135–149. doi:10.1002/jbmr.1739
Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32(1):1–7
Hase H, Kanno Y, Kojima H, Sakurai D, Kobata T (2008) Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin. Arthritis Rheum 58(11):3356–3365. doi:10.1002/art.23971
Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B (2010) Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthritis Rheum 62(2):515–523. doi:10.1002/art.27197
Sørensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, Karsdal MA (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25(1):36–45. doi:10.1007/s00774-006-0725-9
Ikić M, Jajić Z, Lazić E, Ivčević S, Grubišić F, Marušić A, Kovačić N, Grčević D (2014) Association of systemic and intra-articular osteoclastogenic potential, pro-inflammatory mediators and disease activity with the form of inflammatory arthritis. Int Orthop 38(1):183–192. doi:10.1007/s00264-013-2121-0
Husheem M, Nyman JK, Vääräniemi J, Vaananen HK, Hentunen TA (2005) Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay. Calcif Tissue Int 76(3):222–230. doi:10.1007/s00223-004-0123-z
Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT (2012) Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 27(1):79–92. doi:10.1002/jbmr.531
Petitprez V, Royer B, Desoutter J, Guiheneuf E, Rigolle A, Marolleau JP, Kamel S, Guillaume N (2014) CD14(+) CD16(+) monocytes rather than CD14(+) CD51/61(+) monocytes are a potential cytological marker of circulating osteoclast precursors in multiple myeloma. A preliminary study. Int J Lab Hematol. doi:10.1111/ijlh.12216
Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. doi:10.1359/jbmr.060604
Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, Ritchlin CT (2010) CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther 12(1):R14. doi:10.1186/ar2915
Lari R, Kitchener PD, Hamilton JA (2009) The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Ther 11(1):R23. doi:10.1186/ar2616
Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GF, Berheijden G, Miltenburg AM, Rijnders AW, Veys EM, De Keyser F (2000) Human cartilage gp-39+, CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum 43(6):1233–1243
Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P (2005) Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36(5):840–853. doi:10.1016/j.bone.2005.01.021
Oba Y, Lee JW, Ehrlich LA, Chung HY, Jelinek DF, Callander NS, Horuk R, Choi SJ, Roodman GD (2005) MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 33(3):272–278. doi:10.1016/j.exphem.2004.11.015
Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 23(1):43–63
Schett G, Saag KG, Bijlsma JW (2010) From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis 69(8):1415–1419. doi:10.1136/ard.2010.135061
Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255–259
Dai SM, Nishioka K, Yudoh K (2004) Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann Rheum Dis 63(11):1379–1386. doi:10.1136/ard.2003.018481
Tanabe N, Maeno M, Suzuki N, Fujisaki K, Tanaka H, Ogiso B, Ito K (2005) IL-1 alpha stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci 77(6):615–626. doi:10.1016/j.lfs.2004.10.079
Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54(1):158–168
Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, McClanahan T, Bowman EP (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29. doi:10.1186/ar2936
Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D (2008) IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 38(10):2845–2854. doi:10.1002/eji.200838192
Moon YM, Yoon BY, Her YM, Oh HJ, Lee JS, Kim KW, Lee SY, Woo YJ, Park KS, Park SH, Kim HY, Cho ML (2012) IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther 14(6):R246. doi:10.1186/ar4089
Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96(5):1873–1878
Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64(3):740–751. doi:10.1002/art.33390
Zhang W, Cong XL, Qin YH, He ZW, He DY, Dai SM (2013) IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation 36(1):103–109. doi:10.1007/s10753-012-9524-8
Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, Park MK, Cho ML, Lee SH (2012) Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 64(4):1015–1023. doi:10.1002/art.33446
Park MK, Her YM, Cho ML, Oh HJ, Park EM, Kwok SK, Ju JH, Park KS, Min DS, Kim HY, Park SH (2011) IL-15 promotes osteoclastogenesis via the PLD pathway in rheumatoid arthritis. Immunol Lett 139(1–2):42–51. doi:10.1016/j.imlet.2011.04.013
Rifas L, Weitzmann MN (2009) A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheum 60(11):3324–3335. doi:10.1002/art.24877
Mun SH, Ko NY, Kim HS, Kim JW, Kim do K, Kim AR, Lee SH, Kim YG, Lee CK, Lee SH, Kim BK, Beaven MA, Kim YM, Choi WS (2010) Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci CMLS 67(22):3883–3892. doi:10.1007/s00018-010-0410-y
Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH (2014) Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol 66(3):538–548. doi:10.1002/art.38286, PubMed PMID: 24574213
Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A (2007) CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 210(3):798–806. doi:10.1002/jcp.20905
Liou LB, Tsai WP, Chang CJ, Chao WJ, Chen MH (2013) Blood monocyte chemotactic protein-1 (MCP-1) and adapted disease activity Score28-MCP-1: favorable indicators for rheumatoid arthritis activity. PLoS One 8(1):e55346. doi:10.1371/journal.pone.0055346
Acknowledgments
This work was supported by the University of Zagreb Research Grant (402-08/13-03/37).
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Šućur, A., Katavić, V., Kelava, T. et al. Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis. International Orthopaedics (SICOT) 38, 1893–1903 (2014). https://doi.org/10.1007/s00264-014-2386-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00264-014-2386-y