Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The inflammatory milieu favors recruitment and activation of osteoclasts, and leads to bone destruction as a serious complication associated with arthritis and with other inflammatory processes. The frequency and activity of osteoclast progenitors (OCPs) correspond to arthritis severity, and may be used to monitor disease progression and bone resorption, indicating the need for detailed characterization of the discrete OCP subpopulations. Collectively, current studies suggest that the most potent murine bone marrow OCP population can be identified among lymphoid negative population within the immature myeloid lineage cells, as B220CD3CD11b–/loCD115+CD117+CX3CR1+ and possibly also Ter119CD11cCD135loLy6C+RANK. In peripheral blood the OCP population bears the monocytoid phenotype B220CD3NK1.1CD11b+Ly6ChiCD115+CX3CR1+, presumably expressing RANK in committed OCPs. Much less is known about human OCPs and their regulation in arthritis, but the circulating OCP subset is, most probably, comprised among the lymphoid negative population (CD3CD19CD56), within immature monocyte subset (CD11b+CD14+CD16), expressing receptors for M-CSF and RANKL (CD115+RANK+). Our preliminary data confirmed positive association between the proportion of peripheral blood OCPs, defined as CD3CD19CD56CD11b+CD14+, and the disease activity score (DAS28) in the follow-up samples from patients with psoriatic arthritis receiving anti-TNF therapy. In addition, we reviewed cytokines and chemokines which, directly or indirectly, activate OCPs and enhance their differentiation potential, thus mediating osteoresorption. Control of the activity and migratory behaviour of OCPs as well as the identification of crucial bone/joint chemotactic mediators represent promising therapeutic targets in arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldring SR, Purdue PE, Crotti TN, Shen Z, Flannery MR, Binder NB, Ross FP, McHugh KP (2013) Bone remodelling in inflammatory arthritis. Ann Rheum Dis 72(Suppl 2):ii52–ii55. doi:10.1136/annrheumdis-2012-202199

    CAS  PubMed  Google Scholar 

  2. Schett G (2009) Osteoimmunology in rheumatic diseases. Arthritis Res Ther 11(1):210. doi:10.1186/ar2571

    Article  PubMed Central  PubMed  Google Scholar 

  3. Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5(12):667–676. doi:10.1038/nrrheum.2009.217

    Article  CAS  PubMed  Google Scholar 

  4. Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233(1):301–312. doi:10.1111/j.0105-2896.2009.00857.x

    Article  CAS  PubMed  Google Scholar 

  5. Braun T, Zwerina J (2011) Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res Ther 13(4):235. doi:10.1186/ar3380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhao B, Ivashkiv LB (2011) Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther 13(4):234. doi:10.1186/ar3379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Souza PP, Lerner UH (2013) The role of cytokines in inflammatory bone loss. Immunol Investig 42(7):555–622. doi:10.3109/08820139.2013.822766

    Article  CAS  Google Scholar 

  8. Komatsu N, Takayanagi H (2012) Autoimmune arthritis: the interface between the immune system and joints. Adv Immunol 115:45–71. doi:10.1016/B978-0-12-394299-9.00002-3

    Article  CAS  PubMed  Google Scholar 

  9. Deal C (2012) Bone loss in rheumatoid arthritis: systemic, periarticular, and focal. Curr Rheumatol Rep 14(3):231–237. doi:10.1007/s11926-012-0253-7

    Article  CAS  PubMed  Google Scholar 

  10. Del Fattore A, Teti A, Rucci N (2012) Bone cells and the mechanisms of bone remodelling. Front Biosci (Elite Ed) 4:2302–2321

    Article  Google Scholar 

  11. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255. doi:10.1111/j.0105-2896.2009.00859.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kinne RW, Stuhlmüller B, Burmester GR (2007) Cells of the synovium in rheumatoid arthritis. Macrophages Arthritis Res Ther 9(6):224

    Article  Google Scholar 

  13. Finzel S, Englbrecht M, Engelke K, Stach C, Schett G (2011) A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann Rheum Dis 70(1):122–127. doi:10.1136/ard.2010.132423

    Article  PubMed  Google Scholar 

  14. Schett G (2009) Bone marrow edema. Ann N Y Acad Sci 1154:35–40. doi:10.1111/j.1749-6632.2009.04383.x

    Article  PubMed  Google Scholar 

  15. Choi Y, Arron JR, Townsend MJ (2009) Promising bone-related therapeutic targets for rheumatoid arthritis. Nat Rev Rheumatol 5(10):543–548. doi:10.1038/nrrheum.2009.175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Corrado A, Neve A, Maruotti N, Cantatore FP (2013) Bone effects of biologic drugs in rheumatoid arthritis. Clin Dev Immunol 2013:945945. doi:10.1155/2013/945945

    Article  PubMed Central  PubMed  Google Scholar 

  17. Haynes DR (2007) Inflammatory cells and bone loss in rheumatoid arthritis. Arthritis Res Ther 9(3):104. doi:10.1186/ar2213

    Article  PubMed Central  PubMed  Google Scholar 

  18. Le Goff B, Berthelot JM, Maugars Y, Heymann D (2013) Osteoclasts in RA: diverse origins and functions. Joint Bone Spine 80(6):586–591. doi:10.1016/j.jbspin.2013.04.002

    Article  PubMed  Google Scholar 

  19. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139. doi:10.1002/jcb.21553

    Article  CAS  PubMed  Google Scholar 

  20. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. doi:10.1016/j.abb.2008.03.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29(4):403–440. doi:10.1210/er.2007-0038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190(12):1741–1754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40(2):251–264. doi:10.1016/j.bone.2006.09.023

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima T, Takayanagi H (2011) New regulation mechanisms of osteoclast differentiation. Ann NY Acad Sci 1240:E13–E18. doi:10.1111/j.1749-6632.2011.06373.x

    Article  CAS  PubMed  Google Scholar 

  25. Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH, So MW, Lee CK, Robinson WH, Chang EJ (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14(1):R14. doi:10.1186/ar3693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20(2):177–184. doi:10.1359/jbmr.041114

    Article  CAS  PubMed  Google Scholar 

  27. Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98(8):2544–2554

    Article  CAS  PubMed  Google Scholar 

  28. Jacquin C, Gran DE, Lee SK, Lorenzo JA, Aguila HL (2006) Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res 21(1):67–77. doi:10.1359/JBMR.051007

    Article  PubMed  Google Scholar 

  29. Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2011) Parathyroid hormone regulates the distribution and osteoclastogenic potential of hematopoietic progenitors in the bone marrow. J Bone Miner Res 26(6):1207–1216. doi:10.1002/jbmr.324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2013) Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28(5):1203–1213. doi:10.1002/jbmr.1822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Xiao Y, Song JY, de Vries TJ, Fatmawati C, Parreira DB, Langenbach GE, Babala N, Nolte MA, Everts V, Borst J (2013) Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells. Proc Natl Acad Sci USA 110(30):12385–12390. doi:10.1073/pnas.1216082110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281(17):11846–11855. doi:10.1074/jbc.M512624200

    Article  CAS  PubMed  Google Scholar 

  33. Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605. doi:10.1172/jci60920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, Ponnazhagan S (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73(2):672–682. doi:10.1158/0008-5472.can-12-2202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N (2011) Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26(12):2978–2990. doi:10.1002/jbmr.490

    Article  CAS  PubMed  Google Scholar 

  36. Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554. doi:10.1083/jcb.200806139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. De Klerck B, Carpentier I, Lories RJ, Habraken Y, Piette J, Carmeliet G, Beyaert R, Billiau A, Matthys P (2004) Enhanced osteoclast development in collagen-induced arthritis in interferon-gamma receptor knock-out mice as related to increased splenic CD11b + myelopoiesis. Arthritis Res Ther 6(3):R220–R231. doi:10.1186/ar1167

    Article  PubMed Central  PubMed  Google Scholar 

  38. Brühl H, Cihak J, Plachý J, Kunz-Schughart L, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, Luckow B, Stangassinger M, Mack M (2007) Targeting of Gr-1+, CCR2+ monocytes in collagen-induced arthritis. Arthritis Rheum 56(9):2975–2985. doi:10.1002/art.22854

    Article  PubMed  Google Scholar 

  39. Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L (2004) Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum 50(1):265–276. doi:10.1002/art.11419

    Article  CAS  PubMed  Google Scholar 

  40. Szekanecz Z, Vegvari A, Szabo Z, Koch AE (2010) Chemokines and chemokine receptors in arthritis. Front Biosci (Schol Ed) 2:153–167

    Article  Google Scholar 

  41. Galliera E, Locati M, Mantovani A, Corsi MM (2008) Chemokines and bone remodeling. Int J Immunopathol Pharmacol 21(3):485–491

    CAS  PubMed  Google Scholar 

  42. Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, Nakayama T, Sakurai H, Takano Y, Nishimura M, Imai T, Yoshie O, Saiki I (2009) Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol 183(12):7825–7831. doi:10.4049/jimmunol.0803627

    Article  CAS  PubMed  Google Scholar 

  43. Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18(8):1404–1418. doi:10.1359/jbmr.2003.18.8.1404

    Article  CAS  PubMed  Google Scholar 

  44. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  45. Kotani M, Kikuta J, Klauschen F, Chino T, Kobayashi Y, Yasuda H, Tamai K, Miyawaki A, Kanagawa O, Tomura M, Ishii M (2013) Systemic circulation and bone recruitment of osteoclast precursors tracked by using fluorescent imaging techniques. J Immunol 190(2):605–612. doi:10.4049/jimmunol.1201345

    Article  CAS  PubMed  Google Scholar 

  46. Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther 8(5):R152. doi:10.1186/ar2046

    Article  PubMed Central  PubMed  Google Scholar 

  47. Park-Min KH, Lee EY, Moskowitz NK, Lim E, Lee SK, Lorenzo JA, Huang C, Melnick AM, Purdue PE, Goldring SR, Ivashkiv LB (2013) Negative regulation of osteoclast precursor differentiation by CD11b and β2 integrin-B-cell lymphoma 6 signaling. J Bone Miner Res 28(1):135–149. doi:10.1002/jbmr.1739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32(1):1–7

    Article  CAS  PubMed  Google Scholar 

  49. Hase H, Kanno Y, Kojima H, Sakurai D, Kobata T (2008) Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin. Arthritis Rheum 58(11):3356–3365. doi:10.1002/art.23971

    Article  CAS  PubMed  Google Scholar 

  50. Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B (2010) Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthritis Rheum 62(2):515–523. doi:10.1002/art.27197

    CAS  PubMed  Google Scholar 

  51. Sørensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, Karsdal MA (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25(1):36–45. doi:10.1007/s00774-006-0725-9

    Article  PubMed  Google Scholar 

  52. Ikić M, Jajić Z, Lazić E, Ivčević S, Grubišić F, Marušić A, Kovačić N, Grčević D (2014) Association of systemic and intra-articular osteoclastogenic potential, pro-inflammatory mediators and disease activity with the form of inflammatory arthritis. Int Orthop 38(1):183–192. doi:10.1007/s00264-013-2121-0

    Article  PubMed  Google Scholar 

  53. Husheem M, Nyman JK, Vääräniemi J, Vaananen HK, Hentunen TA (2005) Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay. Calcif Tissue Int 76(3):222–230. doi:10.1007/s00223-004-0123-z

    Article  CAS  PubMed  Google Scholar 

  54. Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT (2012) Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 27(1):79–92. doi:10.1002/jbmr.531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Petitprez V, Royer B, Desoutter J, Guiheneuf E, Rigolle A, Marolleau JP, Kamel S, Guillaume N (2014) CD14(+) CD16(+) monocytes rather than CD14(+) CD51/61(+) monocytes are a potential cytological marker of circulating osteoclast precursors in multiple myeloma. A preliminary study. Int J Lab Hematol. doi:10.1111/ijlh.12216

    PubMed  Google Scholar 

  56. Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. doi:10.1359/jbmr.060604

    Article  CAS  PubMed  Google Scholar 

  57. Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, Ritchlin CT (2010) CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther 12(1):R14. doi:10.1186/ar2915

    Article  PubMed Central  PubMed  Google Scholar 

  58. Lari R, Kitchener PD, Hamilton JA (2009) The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Ther 11(1):R23. doi:10.1186/ar2616

    Article  PubMed Central  PubMed  Google Scholar 

  59. Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GF, Berheijden G, Miltenburg AM, Rijnders AW, Veys EM, De Keyser F (2000) Human cartilage gp-39+, CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum 43(6):1233–1243

    Article  CAS  PubMed  Google Scholar 

  60. Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P (2005) Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36(5):840–853. doi:10.1016/j.bone.2005.01.021

    Article  CAS  PubMed  Google Scholar 

  61. Oba Y, Lee JW, Ehrlich LA, Chung HY, Jelinek DF, Callander NS, Horuk R, Choi SJ, Roodman GD (2005) MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 33(3):272–278. doi:10.1016/j.exphem.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  62. Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 23(1):43–63

    Article  CAS  Google Scholar 

  63. Schett G, Saag KG, Bijlsma JW (2010) From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis 69(8):1415–1419. doi:10.1136/ard.2010.135061

    Article  CAS  PubMed  Google Scholar 

  64. Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255–259

    Article  CAS  PubMed  Google Scholar 

  65. Dai SM, Nishioka K, Yudoh K (2004) Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann Rheum Dis 63(11):1379–1386. doi:10.1136/ard.2003.018481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tanabe N, Maeno M, Suzuki N, Fujisaki K, Tanaka H, Ogiso B, Ito K (2005) IL-1 alpha stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci 77(6):615–626. doi:10.1016/j.lfs.2004.10.079

    Article  CAS  PubMed  Google Scholar 

  67. Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54(1):158–168

    Article  CAS  PubMed  Google Scholar 

  68. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, McClanahan T, Bowman EP (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29. doi:10.1186/ar2936

    Article  PubMed Central  PubMed  Google Scholar 

  69. Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D (2008) IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 38(10):2845–2854. doi:10.1002/eji.200838192

    Article  CAS  PubMed  Google Scholar 

  70. Moon YM, Yoon BY, Her YM, Oh HJ, Lee JS, Kim KW, Lee SY, Woo YJ, Park KS, Park SH, Kim HY, Cho ML (2012) IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther 14(6):R246. doi:10.1186/ar4089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96(5):1873–1878

    CAS  PubMed  Google Scholar 

  72. Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64(3):740–751. doi:10.1002/art.33390

    Article  CAS  PubMed  Google Scholar 

  73. Zhang W, Cong XL, Qin YH, He ZW, He DY, Dai SM (2013) IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation 36(1):103–109. doi:10.1007/s10753-012-9524-8

    Article  CAS  PubMed  Google Scholar 

  74. Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, Park MK, Cho ML, Lee SH (2012) Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 64(4):1015–1023. doi:10.1002/art.33446

    Article  CAS  PubMed  Google Scholar 

  75. Park MK, Her YM, Cho ML, Oh HJ, Park EM, Kwok SK, Ju JH, Park KS, Min DS, Kim HY, Park SH (2011) IL-15 promotes osteoclastogenesis via the PLD pathway in rheumatoid arthritis. Immunol Lett 139(1–2):42–51. doi:10.1016/j.imlet.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  76. Rifas L, Weitzmann MN (2009) A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheum 60(11):3324–3335. doi:10.1002/art.24877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Mun SH, Ko NY, Kim HS, Kim JW, Kim do K, Kim AR, Lee SH, Kim YG, Lee CK, Lee SH, Kim BK, Beaven MA, Kim YM, Choi WS (2010) Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci CMLS 67(22):3883–3892. doi:10.1007/s00018-010-0410-y

    Article  CAS  Google Scholar 

  78. Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH (2014) Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol 66(3):538–548. doi:10.1002/art.38286, PubMed PMID: 24574213

    Article  CAS  PubMed  Google Scholar 

  79. Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A (2007) CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 210(3):798–806. doi:10.1002/jcp.20905

    Article  CAS  PubMed  Google Scholar 

  80. Liou LB, Tsai WP, Chang CJ, Chao WJ, Chen MH (2013) Blood monocyte chemotactic protein-1 (MCP-1) and adapted disease activity Score28-MCP-1: favorable indicators for rheumatoid arthritis activity. PLoS One 8(1):e55346. doi:10.1371/journal.pone.0055346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Zagreb Research Grant (402-08/13-03/37).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danka Grčević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šućur, A., Katavić, V., Kelava, T. et al. Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis. International Orthopaedics (SICOT) 38, 1893–1903 (2014). https://doi.org/10.1007/s00264-014-2386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2386-y

Keywords

Navigation