Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The absence of melanopsin alters retinal clock function and dopamine regulation by light

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2013

Abstract

The retinal circadian clock is crucial for optimal regulation of retinal physiology and function, yet its cellular location in mammals is still controversial. We used laser microdissection to investigate the circadian profiles and phase relations of clock gene expression and Period gene induction by light in the isolated outer (rods/cones) and inner (inner nuclear and ganglion cell layers) regions in wild-type and melanopsin-knockout (Opn / 4 ) mouse retinas. In the wild-type mouse, all clock genes are rhythmically expressed in the photoreceptor layer but not in the inner retina. For clock genes that are rhythmic in both retinal compartments, the circadian profiles are out of phase. These results are consistent with the view that photoreceptors are a potential site of circadian rhythm generation. In mice lacking melanopsin, we found an unexpected loss of clock gene rhythms and of the photic induction of Per1-Per2 mRNAs only in the outer retina. Since melanopsin ganglion cells are known to provide a feed-back signalling pathway for photic information to dopaminergic cells, we further examined dopamine (DA) synthesis in Opn / 4 mice. The lack of melanopsin prevented the light-dependent increase of tyrosine hydroxylase (TH) mRNA and of DA and, in constant darkness, led to comparatively high levels of both components. These results suggest that melanopsin is required for molecular clock function and DA regulation in the retina, and that Period gene induction by light is mediated by a melanopsin-dependent, DA-driven signal acting on retinal photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Besharse JC, Hollyfield JG, Rayborn ME (1977) Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol 75:507–527

    Article  PubMed  CAS  Google Scholar 

  2. Bobu C, Hicks D (2009) Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. Invest Ophthalmol Vis Sci 50:3495–3502

    Article  PubMed  Google Scholar 

  3. Pierce ME et al (1993) Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron 10:579–584

    Article  PubMed  CAS  Google Scholar 

  4. Von Schantz M, Lucas RJ, Foster RG (1999) Circadian oscillation of photopigment transcript levels in the mouse retina. Brain Res Mol Brain Res 72:108–114

    Article  Google Scholar 

  5. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421 (see comments)

    Article  PubMed  CAS  Google Scholar 

  6. Nir I, Haque R, Iuvone PM (2000) Diurnal metabolism of dopamine in the mouse retina. Brain Res 870:118–125

    Article  PubMed  CAS  Google Scholar 

  7. Doyle SE, Grace MS, McIvor W, Menaker M (2002) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci 19:593–601

    Article  PubMed  Google Scholar 

  8. Doyle SE, McIvor WE, Menaker M (2002) Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem 83:211–219

    Article  PubMed  CAS  Google Scholar 

  9. Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci USA 103:9703–9708

    Article  PubMed  CAS  Google Scholar 

  10. Storch KF et al (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–741

    Article  PubMed  CAS  Google Scholar 

  11. Tosini G, Davidson AJ, Fukuhara C, Kasamatsu M, Castanon-Cervantes O (2007) Localization of a circadian clock in mammalian photoreceptors. FASEB J 21:3866–3871

    Article  PubMed  CAS  Google Scholar 

  12. Zhang D-Q, Belenky MA, Sollars PJ, Pickard GE, McMahon DG (2012) Melanopsin mediates retrograde visual signaling in the retina. PLoS one 7:e42647. doi:10.1371/journal.pone.0042647

    Article  PubMed  CAS  Google Scholar 

  13. Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16:389–395

    Article  PubMed  CAS  Google Scholar 

  14. Sakamoto K et al (2000) Two circadian oscillatory mechanisms in the mammalian retina. Neuroreport 11:3995–3997

    Article  PubMed  CAS  Google Scholar 

  15. Ruan GX, Allen GC, Yamazaki S, McMahon DG (2008) An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol 6:e249

    Article  PubMed  Google Scholar 

  16. Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Article  PubMed  CAS  Google Scholar 

  17. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Article  Google Scholar 

  18. Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135

    Article  PubMed  CAS  Google Scholar 

  19. Whitmore D, Foulkes NS, Strahle U, Sassone-Corsi P (1998) Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1:701–707

    Article  PubMed  CAS  Google Scholar 

  20. Tosini G, Menaker M (1998) Multioscillatory circadian organization in a vertebrate, iguana iguana. J Neurosci 18:1105–1114

    PubMed  CAS  Google Scholar 

  21. Tosini G, Menaker M (1998) The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res 789:221–228

    Article  PubMed  CAS  Google Scholar 

  22. Zhu H, Green CB (2001) Three cryptochromes are rhythmically expressed in Xenopus laevis retinal photoreceptors. Mol Vis 7:210–215

    PubMed  CAS  Google Scholar 

  23. Zhu H et al (2000) The Xenopus clock gene is constitutively expressed in retinal photoreceptors. Brain Res Mol Brain Res 75:303–308

    Article  PubMed  CAS  Google Scholar 

  24. Cahill GM, Besharse JC (1993) Circadian clock functions localized in xenopus retinal photoreceptors. Neuron 10:573–577

    Article  PubMed  CAS  Google Scholar 

  25. Namihira M et al (2001) Circadian pattern, light responsiveness and localization of rPer1 and rPer2 gene expression in the rat retina. Neuroreport 12:471–475

    Article  PubMed  CAS  Google Scholar 

  26. Witkovsky P et al (2003) Cellular location and circadian rhythm of expression of the biological clock gene Period 1 in the mouse retina. J Neurosci 23:7670–7676

    PubMed  CAS  Google Scholar 

  27. Dinet V, Ansari N, Torres-Farfan C, Korf HW (2007) Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J Pineal Res 42:83–91

    Article  PubMed  CAS  Google Scholar 

  28. Garcia-Fernandez JM, Alvarez-Lopez C, Cernuda–Cernuda R (2007) Cytoplasmic localization of mPER1 clock protein isoforms in the mouse retina. Neurosci Lett 419:55–58

    Article  PubMed  CAS  Google Scholar 

  29. Dorenbos R, Contini M, Hirasawa H, Gustincich S, Raviola E (2007) Expression of circadian clock genes in retinal dopaminergic cells. Vis Neurosci 24:573–580

    Article  PubMed  Google Scholar 

  30. Schneider K et al (2010) Unique clockwork in photoreceptor of rat. J Neurochem 115:585–594. doi:10.1111/j.1471-4159.2010.06953.x

    Article  PubMed  CAS  Google Scholar 

  31. Sandu C, Hicks D, Felder-Schmittbuhl MP (2011) Rat photoreceptor circadian oscillator strongly relies on lighting conditions. Eur J Neurosci 34:507–516

    Article  PubMed  Google Scholar 

  32. Liu X, Zhang Z, Ribelayga CP (2012) Heterogeneous Expression of the Core Circadian Clock Proteins among Neuronal Cell Types in Mouse Retina. PLoS One 7:e50602. doi:10.1371/journal.pone.0050602

    Article  PubMed  CAS  Google Scholar 

  33. Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci USA 103:6386–6391

    Article  PubMed  CAS  Google Scholar 

  34. Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577

    PubMed  CAS  Google Scholar 

  35. Jackson CR et al (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J neurosci Off J Soci Neurosci 32:9359–9368. doi:10.1523/JNEUROSCI.0711-12.2012

    Article  CAS  Google Scholar 

  36. Contini M, Raviola E (2003) GABAergic synapses made by a retinal dopaminergic neuron. Proc Natl Acad Sci USA 100:1358–1363

    Article  PubMed  CAS  Google Scholar 

  37. Vugler AA, Redgrave P, Hewson-Stoate NJ, Greenwood J, Coffey PJ (2007) Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat 33:9–22

    Article  PubMed  CAS  Google Scholar 

  38. Viney TJ et al (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 17:981–988

    Article  PubMed  CAS  Google Scholar 

  39. Zhang DQ et al (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA 105:14181–14186

    Article  PubMed  CAS  Google Scholar 

  40. Knoblauch K, Maloney L (2012) Modeling psychophysical data in R. Springer, New York

  41. Box G, Cox D (1964) An analysis of transformmations (with discussion). J R Stat Soc B 26:211–252

    Google Scholar 

  42. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, Berlin

  43. Wasserman LA (2004) All of statistics. A concise course in statistical inference. Springer, New York

  44. Sakamoto K, Liu C, Tosini G (2004) Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J Neurosci 24:9693–9697

    Article  PubMed  CAS  Google Scholar 

  45. Dkhissi-Benyahya O, Gronfier C, De Vanssay W, Flamant F, Cooper HM (2007) Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53:677–687

    Article  PubMed  CAS  Google Scholar 

  46. Cahill GM, Besharse JC (1991) Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. J Neurosci 11:2959–2971

    PubMed  CAS  Google Scholar 

  47. Imbesi M et al (2009) Dopamine receptor-mediated regulation of neuronal “clock” gene expression. Neuroscience 158:537–544. doi:10.1016/j.neuroscience.2008.10.044

    Article  PubMed  CAS  Google Scholar 

  48. Witkovsky P, Gabriel R, Haycock JW, Meller E (2000) Influence of light and neural circuitry on tyrosine hydroxylase phosphorylation in the rat retina. J Chem Neuroanat 19:105–116

    Article  PubMed  CAS  Google Scholar 

  49. Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM (2008) The circadian clock system in the mammalian retina. BioEssays 30:624–633

    Article  PubMed  CAS  Google Scholar 

  50. Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythm 19:91–102

    Article  CAS  Google Scholar 

  51. Peirson SN et al (2006) Comparison of clock gene expression in SCN, retina, heart, and liver of mice. Biochem Biophys Res Commun 351:800–807

    Article  PubMed  CAS  Google Scholar 

  52. Sakamoto K et al (2005) Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci 22:3129–3136

    Article  PubMed  Google Scholar 

  53. Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801

    Article  PubMed  CAS  Google Scholar 

  54. Cameron MA et al (2008) Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. J Biol Rhythm 23:489–501. doi:10.1177/0748730408325874

    Article  Google Scholar 

  55. Lucassen EA et al (2012) Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock. Eur J Neurosci 35:1466–1474. doi:10.1111/j.1460-9568.2012.08054.x

    Article  PubMed  Google Scholar 

  56. vanderLeest HT, Rohling JHT, Michel S, Meijer JH (2009) Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS One 4:e4976. doi:10.1371/journal.pone.0004976

    Article  PubMed  Google Scholar 

  57. Ecker JL et al. ([date unknown]) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67: 49–60

  58. Dkhissi-Benyahya O, Rieux C, Hut RA, Cooper HM (2006) Immunohistochemical evidence of a melanopsin cone in human retina. Invest Ophthalmol Vis Sci 47:1636–1641

    Article  PubMed  Google Scholar 

  59. Provencio I, Jiang G, De Grip WJ, Par Hayes W, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain and eye. Proc Natl Acad Sci USA 95:340–345

    Article  PubMed  CAS  Google Scholar 

  60. Provencio I et al (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    PubMed  CAS  Google Scholar 

  61. Peirson SN et al (2004) Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Brain Res Mol Brain Res 123:132–135

    Article  PubMed  CAS  Google Scholar 

  62. Wong KY, Dunn FA, Graham DM, Berson DM (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582:279–296

    Article  PubMed  CAS  Google Scholar 

  63. Vugler AA et al (2007) Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina. Exp Neurol 205:26–35

    Article  PubMed  CAS  Google Scholar 

  64. Cameron MA et al (2009) Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29:761–767

    Article  PubMed  CAS  Google Scholar 

  65. Pozdeyev N et al (2008) Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci 27:2691–2700. doi:10.1111/j.1460-9568.2008.06224.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Gronfier and G. Gingras for critical reading of the manuscript, S. Hattar for the gift of the Opn / 4 mice. This research was supported by Rhône-Alpes CMIRA, ANR-09-MNPS-040, Retina France, Volubilis, GDRI Neurosciences, Cluster Handicap Vieillissement Neurosciences. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouria Dkhissi-Benyahya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dkhissi-Benyahya, O., Coutanson, C., Knoblauch, K. et al. The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell. Mol. Life Sci. 70, 3435–3447 (2013). https://doi.org/10.1007/s00018-013-1338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1338-9

Keywords

Navigation