Nothing Special   »   [go: up one dir, main page]

Skip to main content

SVMTriP: A Method to Predict B-Cell Linear Antigenic Epitopes

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2131))

Abstract

Identifying protein antigenic epitopes recognizable by antibodies is the key step for new immuno-diagnostic reagent discovery and vaccine design. To facilitate this process and improve its efficiency, computational methods were developed to predict antigenic epitopes. For the linear B-cell epitope prediction, many methods were developed, including BepiPred, ABCPred, AAP, BCPred, BayesB, BEOracle/BROracle, BEST, and SVMTriP. Among these methods, SVMTriP, a frontrunner, utilized Support Vector Machine by combining the tri-peptide similarity and Propensity scores. Applied on non-redundant B-cell linear epitopes extracted from IEDB, SVMTriP achieved a sensitivity of 80.1% and a precision of 55.2% with a five-fold cross-validation. The AUC value was 0.702. The combination of similarity and propensity of tri-peptide subsequences can improve the prediction performance for linear B-cell epitopes. A webserver based on this method was constructed for public use. The server and all datasets used in the corresponding study are available at http://sysbio.unl.edu/SVMTriP. This chapter describes the webserver of SVMTriP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Getzoff ED, Tainer JA, Lerner RA et al (1988) The chemistry and mechanism of antibody binding to protein antigens. Adv Immunol 43:1–98

    Article  CAS  PubMed  Google Scholar 

  2. Milich DR (1989) Synthetic T and B cell recognition sites: implications for vaccine development. Adv Immunol 45:195–282

    Article  CAS  PubMed  Google Scholar 

  3. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  4. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 78(6):3824–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emini EA, Hughes JV, Perlow DS et al (1985) Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pellequer JL, Westhof E, MHV V (1993) Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett 36(1):83–100

    Article  CAS  PubMed  Google Scholar 

  7. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins - a tool for the selection of peptide antigens. Naturwissenschaften 72(4):212–213

    Article  CAS  Google Scholar 

  8. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

    Article  CAS  PubMed  Google Scholar 

  9. Vita R, Zarebski L, Greenbaum JA et al (2010) The immune epitope database 2.0. Nucleic Acids Res 38(Database issue):D854–D862. https://doi.org/10.1093/nar/gkp1004

    Article  CAS  PubMed  Google Scholar 

  10. Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79. https://doi.org/10.1186/1471-2164-6-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schonbach C, JLY K, Sheng X et al (2000) FIMM, a database of functional molecular immunology. Nucleic Acids Res 28(1):222–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. https://doi.org/10.1186/1745-7580-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saha S, GPS R (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48. https://doi.org/10.1002/Prot.21078

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Liu H, Yang J et al (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428. https://doi.org/10.1007/S00726-006-0485-9

    Article  CAS  PubMed  Google Scholar 

  15. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255. https://doi.org/10.1002/Jmr.893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao B, Zhang L, Liang S et al (2012) SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7(9):e45152. https://doi.org/10.1371/journal.pone.0045152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alix AJ (1999) Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine 18(3–4):311–314

    Article  CAS  PubMed  Google Scholar 

  18. Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 16(1):20–22. https://doi.org/10.1002/jmr.602

    Article  CAS  PubMed  Google Scholar 

  19. Wee LJ, Simarmata D, Kam YW et al (2010) SVM-based prediction of linear B-cell epitopes using Bayes feature extraction. BMC Genomics 11(Suppl 4):S21. https://doi.org/10.1186/1471-2164-11-S4-S21

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Wu W, Negre NN et al (2011) Determinants of antigenicity and specificity in immune response for protein sequences. BMC Bioinformatics 12:251. https://doi.org/10.1186/1471-2105-12-251

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gao J, Faraggi E, Zhou Y et al (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7(6):e40104. https://doi.org/10.1371/journal.pone.0040104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joachims T (1999) Making large-Scale SVM Learning Practical. In: Schölkopf B, Burges C (eds) Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, pp 169–184

    Google Scholar 

  24. Pruitt KD, Tatusova T, Klimke W et al (2009) NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Res 37(Database issue):D32–D36. https://doi.org/10.1093/nar/gkn721

    Article  CAS  PubMed  Google Scholar 

  25. Biswas AK, Noman N, Sikder AR (2010) Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinformatics 11:273. https://doi.org/10.1186/1471-2105-11-273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lei Z, Dai Y (2005) An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 6:291. https://doi.org/10.1186/1471-2105-6-291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is supported by funding under C.Z.’s startup funds from the University of Nebraska, Lincoln, NE. This work was completed utilizing the Holland Computing Center of the University of Nebraska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yao, B., Zheng, D., Liang, S., Zhang, C. (2020). SVMTriP: A Method to Predict B-Cell Linear Antigenic Epitopes. In: Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 2131. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0389-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0389-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0388-8

  • Online ISBN: 978-1-0716-0389-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics