Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Environment can impact the wear behavior of metals and alloys substantially. The tribological properties of Al0.6CoCrFeNi high-entropy alloys (HEAs) were investigated in ambient air, deionized water, simulated acid rain, and simulated seawater conditions at frequencies of 2–5 Hz. The as-cast alloy was composed of simple face-centered cubic and body-centered cubic phases. The wear rate of the as-cast HEA in the ambient air condition was significantly higher than that in the liquid environment. The wear resistance in seawater was superior to that in ambient air, deionized water, and acid rain. Both the friction coefficient and wear rate in seawater were the lowest due to the formation of oxidation film, lubrication, and corrosion action in solution. The dominant wear mechanism in the ambient air condition and deionized water was abrasive wear, delamination wear, and oxidative wear. By contrast, the wear mechanism in acid rain and seawater was mainly corrosion wear, adhesive wear, abrasive wear, and oxidative wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys (Butterworth-Heinemann, Oxford, 2014).

    Google Scholar 

  2. M.H. Tsai and J.W. Yeh: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).

    Article  Google Scholar 

  3. J.W. Yeh: Recent progress in high-entropy alloys. Ann. Chimie Sci. Matériaux 31, 633 (2006).

    Article  CAS  Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  5. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).

    Article  CAS  Google Scholar 

  6. Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830 (2012).

    Article  CAS  Google Scholar 

  7. S.G. Ma and Y. Zhang: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).

    Article  CAS  Google Scholar 

  8. S. Ma, Z. Chen, and Y. Zhang: Evolution of microstructures and properties of the AlxCrCuFeNi2 high-entropy alloys. Mater. Sci. Forum 754–746, 706 (2013).

    Article  Google Scholar 

  9. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).

    Article  CAS  Google Scholar 

  10. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  11. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).

    Article  CAS  Google Scholar 

  12. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2016).

    Article  Google Scholar 

  13. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng., A 508, 214 (2009).

    Article  Google Scholar 

  14. C.F. Lee and T.T. Shun: Effect of Fe content on microstructure and mechanical properties of Al0.5CoCrFexNiTi0.5 high-entropy alloys. Mater. Charact. 114, 179 (2016).

    Article  CAS  Google Scholar 

  15. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chang: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  16. Y. Zhang, X.F. Wang, G.L. Chen, and Y. Qiao: Effect of Ti on the microstructure and properties of CoCrCuFeNiTix high-entropy alloys. Ann. Chimie Sci. Matériaux 31, 699 (2006).

    Article  CAS  Google Scholar 

  17. Y. Zhou, Y. Zhang, Y. Wang, and G. Chen: Microstructure characterization of Alx(TiVCrMnFeCoNiCu)100− x high-entropy alloy system with multi-principal elements. Rare Met. Mater. Eng. 36, 2136 (2007).

    CAS  Google Scholar 

  18. W.Y. Tang and J.W. Yeh: Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi high-entropy alloys. Metall. Mater. Trans. A 40, 1479 (2009).

    Article  Google Scholar 

  19. C.Y. Hsu, C.C. Juan, T.S. Sheu, S.K. Chen, and J.W. Yeh: Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys. JOM 65, 1840 (2013).

    Article  CAS  Google Scholar 

  20. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 213 (2011).

    Article  Google Scholar 

  21. D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe: Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 98, 288 (2015).

    Article  CAS  Google Scholar 

  22. C. Varvenne, A. Luque, and W.A. Curtin: Theory of strengthening in fcc high entropy alloys. Acta Mater. 118, 164 (2016).

    Article  CAS  Google Scholar 

  23. C-M. Lin and H-L. Tsai: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19, 288 (2011).

    Article  CAS  Google Scholar 

  24. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  25. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, and Y. Wang: Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater. Sci. Eng., A 648, 15 (2015).

    Article  CAS  Google Scholar 

  26. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513 (2006).

    Article  CAS  Google Scholar 

  27. Y. Liu: Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys. Rare Met. Mater. Eng. 38, 1602 (2009).

    CAS  Google Scholar 

  28. Y. Liu, S. Ma, M.C. Gao, C. Zhang, T. Zhang, H. Yang, Z. Wang, and J. Qiao: Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metall. Mater. Trans. A 47, 3312 (2016).

    Article  CAS  Google Scholar 

  29. Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, and J. Qiao: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 210, 233 (2018).

    Article  CAS  Google Scholar 

  30. W.R. Wang, W.L. Wang, and J.W. Yeh: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143 (2014).

    Article  CAS  Google Scholar 

  31. K.A. Kobe: The friction and lubrication of solids. J. Chem. Educ. 28, 1 (1951).

    Article  Google Scholar 

  32. Y. Wang, Y. Yang, H. Yang, M. Zhang, and J. Qiao: Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 725, 365 (2017).

    Article  CAS  Google Scholar 

  33. N. Lin, L. Qiang, J. Zou, J. Guo, D. Li, S. Yuan, M. Yong, Z. Wang, Z. Wang, and B. Tang: Surface texturing-plasma nitriding duplex treatment for improving tribological performance of AISI 316 stainless steel. Materials 9, 875 (2016).

    Article  Google Scholar 

  34. N. Lin, Q. Liu, J. Zou, D. Li, S. Yuan, Z. Wang, and B. Tang: Surface damage mitigation of Ti6Al4V alloy via thermal oxidation for oil and gas exploitation application: Characterization of the microstructure and evaluation of the surface performance. RSC Adv. 7, 13517 (2017).

    Article  CAS  Google Scholar 

  35. P. Decuzzi and G. Demelio: The effect of material properties on the thermoelastic stability of sliding systems. Wear 252, 311 (2002).

    Article  CAS  Google Scholar 

  36. H. Blok: The dissipation of frictional heat. Appl. Sci. Res. 5, 151 (1955).

    Article  Google Scholar 

  37. S. Lingard: Estimation of flash temperatures in dry sliding. Proc. Inst. Mech. Eng., Part C 198, 91 (1984).

    Article  Google Scholar 

  38. M.F. Ashby, J. Abulawi, and H.S. Kong: Temperature maps for frictional heating in dry sliding. Tribol. Trans. 34, 577 (1991).

    Article  Google Scholar 

  39. A. Yevtushenko and R. Chapovska: Effect of time-dependent speed on frictional heat generation and wear in transient axisymmetrical contact of sliding. Arch. Appl. Mech. 67, 331 (1997).

    Article  Google Scholar 

  40. H.A. Abdel-Aal: Division of frictional heat: The dependence on sliding parameters. Int. Commun. Heat Mass Transfer 26, 279 (1999).

    Article  Google Scholar 

  41. R. Komanduri and Z.B. Hou: Analysis of heat partition and temperature distribution in sliding systems. Wear 251, 925 (2001).

    Article  Google Scholar 

  42. J. Bauzin and N. Laraqi: Simultaneous estimation of frictional heat flux and two thermal contact parameters for sliding contacts. Numer. Heat Transfer, Part A 45, 313 (2004).

    Article  Google Scholar 

  43. B.E. Gurskii and A.V. Chichinadze: Frictional heat problem and its evolution. Part 1. Blok model and its improvement. J. Frict. Wear 28, 316 (2007).

    Article  Google Scholar 

  44. N.P. Suh, S. Jahanmir, I. Abrahamson, and P. Ernest: The delamination theory of wear. Wear 25, 111 (1974).

    Article  Google Scholar 

  45. D.A. Rigney and J.P. Hirth: Plastic deformation and sliding friction of metals. Wear 53, 345 (1979).

    Article  CAS  Google Scholar 

  46. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).

    Article  CAS  Google Scholar 

  47. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11 (2014).

    Article  CAS  Google Scholar 

  48. Y.Y. Zhao and T.G. Nieh: Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys. Intermetallics 86, 45 (2017).

    Article  CAS  Google Scholar 

  49. P.M. Ligrani, C.S. Subramanian, D.W. Craig, and P. Kaisuwan: Fundamentals of Heat Transfer (Prentice-Hall, New Jersey, 1980).

    Google Scholar 

  50. X. Lin, Z. Bai, Y. Liu, B. Tang, and H. Yang: Sliding tribological characteristics of in-situ dendrite-reinforced Zr-based metallic glass matrix composites in the acid rain. J. Alloys Compd. 686, 866 (2016).

    Article  CAS  Google Scholar 

  51. Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun, and J.Q. Wang: Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions. Corros. Sci. 63, 159 (2012).

    Article  CAS  Google Scholar 

  52. L. Wang and Y. Chao: Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl solution. Mater. Lett. 69, 76 (2012).

    Article  CAS  Google Scholar 

  53. F.P. Incropera: Fundamentals of Heat and Mass Transfer, 5th ed. (Wiley, New York, 2002).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

J.W.Q. would like to acknowledge the financial support from the State Key Lab of Advanced Metals and Materials (No. 2016-ZD03). P.K.L. would like to acknowledge the National Science Foundation (DMR-1611180), the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855 and DE-FE-0024054, and DE-FE-0011194), with Dr. Farkas, Mr. V. Cedro, Mr. R. Dunst, and W.J. Hullen as program managers. M.C.G. acknowledges the support of the US Department of Energy’s Fossil Energy Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL) under the RES contract DE-FE-0004000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijun Yang or Junwei Qiao.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Material

43578_2018_33193310_MOESM1_ESM.docx

Supplementary Materials: Wear behavior of Al0.6CoCrFeNi high-entropy alloy: Effect of environments (approximately 370 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Shi, X.H., Yang, H. et al. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. Journal of Materials Research 33, 3310–3320 (2018). https://doi.org/10.1557/jmr.2018.279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.279