
STA 414/2104:
Statistical Methods for Machine Learning II

Week 9 Natural Language Processing

Michal Malyska

University of Toronto

Prob Learning (UofT) STA414-Week 9 1 / 31

Overview

Natural Language Processing

Embeddings
I Bag of Words
I Term Frequency - Inverse Document Frequency
I Word2Vec

NLP concepts

NLP tasks
I Document Classification
I Token Classification
I Natural Language Generation

Prob Learning (UofT) STA414-Week 9 2 / 31

Machine Learning on Text

So far in the class (and probably all other STA classes) we have been
operating under the assumptions that all the inputs to our models are
numbers. Today we will focus on another kind of input - text. In
particular, Natural Language.

How is natural language represented?

Prob Learning (UofT) STA414-Week 9 3 / 31

NLP concepts

Some names we will be using throughout this lecture:

Token - A single ”atom” of text, usually a word

Document - A complete datapoint of text

Span - A subset of a document, a group of Tokens

Vocabulary - A list of all possible tokens

Prob Learning (UofT) STA414-Week 9 4 / 31

NLP Tasks

What do we want to do with text?

Classification (Documents, Spans, Tokens)
I Hate speech detection
I Spam filtering
I Social Media drug adverse effect identification

Prob Learning (UofT) STA414-Week 9 5 / 31

NLP Tasks

What do we want to do with text?

Generation (Question Answering, Summarization, Free-text
generation, . . .)

I Translating natural language into SQL queries
I ”Hey siri what is the weather like?”
I Chatbots
I Talk to a transformer

Prob Learning (UofT) STA414-Week 9 6 / 31

https://transformer.huggingface.co/doc/gpt2-large

NLP Tasks

What do we want to do with text?

Regression (Essay scoring, like count prediction)
I How many retweets will this tweet get?

Information Extraction
I Who are the people mentioned in this text?

Document Retrieval
I Google search
I Automatic literature review

Prob Learning (UofT) STA414-Week 9 7 / 31

Spam

We begin by revisiting a familiar example from earlier lectures:
determining whether an email is spam or not.

What kind of task is it ?

How would you approach it?

More formally: Consider a set of observations (xi, yi)i=1:N where yi = 1
means datapoint i was spam, and xi is the text of the email.
Our goal is to create / learn a function fθ such that fθ(xi) = p(yi|xi)

Prob Learning (UofT) STA414-Week 9 8 / 31

Heuristics

Perhaps it is possible to find some heuristics that work:

If xi contains any prescription medication name ŷi = 1

If xi is is mostly capital letters ŷi = 1

If xi contains ”Make Amount every Time Period” ŷi = 1

Prob Learning (UofT) STA414-Week 9 9 / 31

Can we learn simple heuristics?

To apply any kind of learning algorithms we have seen before we need
to convert x into a numerical representation h.

Given a vocabulary Vj=1:M , determine h such that: hj = 1
whenever token j from the vocabulary is present in x.

Each datapoint x is represented by an M dimensional vector of 0’s
and 1’s

How do we determine the vocabulary?

Just list and count all the words in all of the documents, and then
only keep the top M.

We have numerical features, so just plug them as input into any
”standard” algorithm: Logistic Regression

Prob Learning (UofT) STA414-Week 9 10 / 31

Bag of Words

This simple binary representation is called a (binary) Bag of Words.

What is included in the representation h of x?

What if we care about more than just the presence / abscence of a
specific word?

We could just include the count of each word turning h from a
vector of 1’s and 0’s into a vector of counts.

What about phrases? ”Polyethylene Glicol”?

Prob Learning (UofT) STA414-Week 9 11 / 31

N-Grams

Instead of considering single words as entries in a vocabulary, perhaps
we would want to consider phrases.
An N-gram is a contiguous sequence of N tokens from a given text.
Under N = 1; also called unigrams

V = (”This”, ”is”, ”a”, ”sentence”)

”This is a sentence” = (1, 1, 1, 1)

”A sentence” = (0, 0, 1, 1)

Under N = 2; also called bigrams

V = (”This is”, ”is a”, ”a sentence”)

”This is a sentence” = (1, 1, 1)

”A sentence” = (0, 0, 1)
Prob Learning (UofT) STA414-Week 9 12 / 31

Common words

Some words are incredibly common, but do not contribute a lot in
terms of distinguishing between texts.

Virtually any text in English will contain ”the” or ”a”

Should we include those in the vocabulary?

Can we learn which words to include in the vocabulary?

We can better represent documents by the relative frequency of
words in them.

Note: in practice we often remove some words from all text and
ignore them completely. You will see those referred to as
stopwords

Prob Learning (UofT) STA414-Week 9 13 / 31

Term Frequency

We can represent the ”count” (Term Frequency) of a word in many
different ways:

Raw count of times it is present in x: BoW

Binarized count of times it is present in x: binary BoW

Count of times it is present in x divided by number of tokens in x

Raw count scaled by number of other terms (not count of) in x

Log of the raw count

Prob Learning (UofT) STA414-Week 9 14 / 31

Term Frequency example

V = (”This”, ”is”, ”a”, ”sentence”, ”another”, ”not”, ”Yet”)
x1 =”This is a sentence. This is another sentence.”
x2 =”This is not a sentence. Yet another not a sentence”

Prob Learning (UofT) STA414-Week 9 15 / 31

Inverse Document Frequency

Just like with term frequency, we can represent the ”relative
prevalence” (Inverse Document Frequency) of a word in many
different ways:
Denote Nj =

∑N
i=1 I (Vj ∈ xi) count of datapoints that include j-th

word in the vocabulary.

1

Nj

N

Nj

log(
N

Nj
)

You can think of it as a scaling factor for each of the words in the
vocabulary.

Prob Learning (UofT) STA414-Week 9 16 / 31

TF-IDF

By combining Term Frequency with Inverse Document Frequency we
can measure how common the word is in a particular datapoint relative
to other documents.

TF-IDF(x) = TF (x)× IDF (x)

Prob Learning (UofT) STA414-Week 9 17 / 31

TF-IDF example

V = (”This”, ”is”, ”a”, ”sentence”, ”another”, ”not”, ”Yet”)
x1 =”This is a sentence. This is another sentence.”
x2 =”This is not a sentence. Yet another not a sentence”

Prob Learning (UofT) STA414-Week 9 18 / 31

Embeddings

All of the methods we talked about can be used to generate numerical
representations of whole documents, by the use of just the word
occurences, and simple functions. We say that hi is the embedding of
xi, and we call g(x) = h an embedding function. We can then re-frame
our problem of learning fθ(x) = y as:

fθ(x) = cθ1(h) = cθ1(gθ2(x)) = y

Where cθ is any classification / regression function, and gθ is an
embedding function.

Embeddings are not restricted to documents.

How could we embed an image?

What if our datapoint consists of an image and text?

Prob Learning (UofT) STA414-Week 9 19 / 31

Token classification

Sometimes we care about something more granular than just the whole
document. Perhaps we want to identify each parts of text that
correspond to certain concepts:

What should we get a represantation of?

How could we do this?

1from SpaCy: https://explosion.ai/demos/displacy-ent
Prob Learning (UofT) STA414-Week 9 20 / 31

Word2Vec

We start with a fairly strong assumption: ”Words that have similar
meanings will occur in simmilar contexts” Based on that we define a
context of size k of token xi,j

1as a set of tokens:

context(xi,j) = {xi,j−k, xi,j−(k−1), . . . , xi,j−1, xi,j+1, . . . xi,j+k}

Then given a set of datapoints xi=1:N,j=1:Mi and a vocabulary Vr=1:R

we define an unsupservised learning task of predicting what words
occur in the context of each word in the vocabulary. More formally,
given a sequence of training words x1, . . . , xT we want to maximize the
average log probability:

1

T

T∑
t=1

∑
j∈context(t)

logp(wj |wt)

1This is also called a skip-gram
Prob Learning (UofT) STA414-Week 9 21 / 31

Skip Gram Continued

The basic formulation of p(x|w) uses the softmax function:

p(x|w) =
exp

(
(u(w)T (v(x)

)∑R
r=1 exp ((u(w))T (v(Vr)))

where u(w) is the ”word” and v(w) is the ”context” representation of
word w. What are those representations?

In our particular case we will take u and v to be simple linear
projections of the one-hot (binary BoW) encoding of the word,
and context respectively.

u(w) = bBoW (w)UT

The matrix U will be of size R× e where e is the embedding
dimension, which is a hyperparameter you chose.

Prob Learning (UofT) STA414-Week 9 22 / 31

Skip Gram Continued

Notice that the the bBoW(w) is a binary vector with all 0’s and a
single 1 at the index of word w in the Vocabulary!
Similarily we define v(w) to be a linear projection that back from u(w)
to predict each word in the context.

1”Efficient Estimation of Word Representations in Vector Space”, Mikolov et al
Prob Learning (UofT) STA414-Week 9 23 / 31

Skip Gram Vis

How to estimate p(”car”|”ants”)?

1Image from:
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Prob Learning (UofT) STA414-Week 9 24 / 31

Word2Vec

The training process is then as follows:

Initialize the two matrices

Sample pairs of words (wi, wj) and compute the objective

Gradient Descent based on the objective.

After convergence keep only the matrix U

Embedding of word at vocabulary index i is just the i-th row of U

1Image from:
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Prob Learning (UofT) STA414-Week 9 25 / 31

Word2Vec notes

In practice this training procedure is not feasible - we would have
to compute softmax over the entire vocabulary at every step.

There are a lot of tricks and improvements over the years - really
worth reading the original paper.

There is another possible objective called Continuous Bag of
Words (CBoW) that is the exact opposite of the Skip Gram
Objective - estimate the word given context instead of context
given word.

What are we missing?

Prob Learning (UofT) STA414-Week 9 26 / 31

Token Classification and Embeddings continued

To classify tokens, we can just take the Word2Vec embedding of
each token as an input to e.g. Linear Regression / Multinomial
Naive Bayes, and estimating probabilities that the token belongs
to a certain category.

We can combine Word2Vec representations into document level
representations.

We can combine Different embedding methods! Nothing is
stopping you from taking TF-IDF vector of a document and
”stacking” the average of all Word2Vec vectors in the document.

Prob Learning (UofT) STA414-Week 9 27 / 31

Sequence 2 Sequence Tasks

What if our output should also be in the form of text?

Re-frame the ”context” to only feature words before the input

Train in the unsupervised setting of CBoW, with the modified
context.

Idea: Sample the next word, conditional on the previous k based
on the CBoW softmax.

What kind of model is that?

Prob Learning (UofT) STA414-Week 9 28 / 31

Similarity

What does it mean for 2 words to be similar?

What does it mean for 2 datapoints to be similar?

The most common way to measure similarity in NLP is via the
cosine similarity

We define cosine similarity between two vectors to be:

cosine sim(x, y) =
x · y

||x|| · ||y||
=

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

This is especially convenient for binary BoW.

Prob Learning (UofT) STA414-Week 9 29 / 31

Some Cool properties of W2V

Let h(x) be the Word2Vec embedding of the word x. We can perform
some vector algebra to find that:

h(”Athens”)− h(”Greece”) + h(”Germany”) u h(”Berlin”)

h(”Mice”)− h(”Mouse”) + h(”Dollar”) u h(”Dollars”)

In the original paper they propose a set of 14 categories and
evaluate accuracy on these kinds of ”algebraic” operations to find
an accuracy of ∼ 55− 60%

You can just download the original Word2Vec embeddings and play
around!

Prob Learning (UofT) STA414-Week 9 30 / 31

Summary

The first modelling step with any data should be to convert it to a
numerical representation.

We can learn embeddings from unlabelled data.

We can easily combine different kinds of embeddings to improve
how we represent data.

We have learned a number of different document, and token
embedding algorithms.

Human Language is hard!

Prob Learning (UofT) STA414-Week 9 31 / 31

