
CSC 412/2506:

Probabilistic Learning and Reasoning

Week 4 - 1/2: Message Passing

Murat A. Erdogdu

University of Toronto

Prob Learning (UofT) CSC412-Week 4-1/2 1 / 18

Overview

Trueskill latent variable model

Message passing

Prob Learning (UofT) CSC412-Week 4-1/2 2 / 18

Latent variables

What to do when a variable z is unobserved?

If we never condition on z when in the inference problem, then we
can just integrate it out.

However, in certain cases, we are interested in the latent variables
themselves, e.g. the clustering problems.

More on latent variables when we cover Gaussian mixtures.

Prob Learning (UofT) CSC412-Week 4-1/2 3 / 18

t
XZ 412 1

The TrueSkill latent variable model

TrueSkill model is a player ranking system for competitive games.

The goal is to infer the skill of a set of players in a competitive
game, based on observing who beats who.

In the TrueSkill model, each player has a fixed level of skill,
denoted zi.

We initially don’t know anything about anyone’s skill, but we
assume everyone’s skill is independent (e.g. an independent
Gaussian prior).

We never get to observe the players’ skills directly, which makes
this a latent variable model.

Prob Learning (UofT) CSC412-Week 4-1/2 4 / 18

TrueSkill model

Instead, we observe the outcome of a series of matches between
di↵erent players.

For each game, the probability that player i beats player j is given
by

p(i beats j) = �(zi � zj)

where sigma is the logistic function: �(y) = 1
1+exp(�y) .

We can write the entire joint likelihood of a set of players and
games as:

p(z1, z2, . . . zN , game 1, game 2, .. game T)

=

"
NY

i=1

p(zi)

#"
Y

games

p(i beats j|zi, zj)
#

Prob Learning (UofT) CSC412-Week 4-1/2 5 / 18

Fest

N T
T T

Posterior

Given the outcome of some matches, the players’ skills are no
longer independent, even if they’ve never played each other.

Computing the posterior over even two players’ skills requires
integrating over all the other players’ skills:

p(z1, z2|game 1, game 2, ... game T)

=

Z
· · ·

Z
p(z1, z2, z3 . . . zN |x)dz3 . . . dzN

Message passing can be used to compute posteriors!

More on this model in Assignment 2.

Prob Learning (UofT) CSC412-Week 4-1/2 6 / 18

98 0
game J

t a game outcomes

T
Bame 1 game

2

Variable Elimination Order and Trees

Last week: we can do exact inference by variable elimination: I.e.
to compute p(A|C), we can marginalize p(A,B|C) over every
variable in B, one at a time.

Computational cost is determined by the graph structure, and the
elimination ordering.

Determining the optimal elimination ordering is hard.

Even if we do, the resulting marginalization might also be
unreasonably costly.

Fortunately, for trees, any elimination ordering that goes from the
leaves inwards towards any root will be optimal.

You can think of trees as just chains which sometimes branch.

Prob Learning (UofT) CSC412-Week 4-1/2 7 / 18

0 0 97
0

É

Inference in Trees

A graph is G = (V, E) where V is
the set of vertices (nodes) and E the
set of edges

For i, j 2 V, we have (i, j) 2 E if
there is an edge between the nodes
i and j.

For a node in graph i 2 V, N(i)
denotes the neighbors of i, i.e.
N(i) = {j : (i, j) 2 E}.
Shaded nodes are observed, and
denoted by x̄2, x̄4, x̄5.

The joint distribution in the general case is

p(x1:n) =
1

Z

Y

i2V
 (xi)

Y

(i,j)2E

 ij(xi, xj).

Prob Learning (UofT) CSC412-Week 4-1/2 8 / 18

a de
Gide
ri 1,3

3,4

Xr

Yaz
Xe Xe

Fat

Inference in Trees

Joint distribution is

p(x1:n) =
1

Z

Y

i2V
 (xi)

Y

(i,j)2E

 ij(xi, xj).

Want to compute p(x3|x̄2, x̄4, x̄5).
We have

p(x3|x̄2, x̄4, x̄5) / p(x3, x̄2, x̄4, x̄5).

Let’s write the variable elimination.

Prob Learning (UofT) CSC412-Week 4-1/2 9 / 18

yiiptiniY.IE
F

a 1 11 I

Inference in Trees

Slide credit: S. Ermon

Prob Learning (UofT) CSC412-Week 4-1/2 10 / 18

Xa
plata 1 Mz

Xa

if 00

t

tn
O

ay
Hamish

Message Passing on Trees

We perform variable elimination from leaves to root, which is the sum
product algorithm to compute all marginals. Belief propagation is a
message-passing between neighboring vertices of the graph.

The message sent from variable j to i 2 N(j) is

mj!i(xi) =
X

xj

 j(xj) ij(xi, xj)
Y

k2N(j)/i

mk!j(xj)

I If xj is observed, the message is

mj!i(xi) = j(x̄j) ij(xi, x̄j)
Y

k2N(j)/i

mk!j(x̄j)

Once the message passing stage is complete, we can compute our
beliefs as

b(xi) / i(xi)
Y

j2N(i)

mj!i(xi).

Once normalized, beliefs are the marginals we want to compute!
Prob Learning (UofT) CSC412-Week 4-1/2 11 / 18

Ox O
t
Xz L t

0 3 Marla 431537423142,43

614124in mama Pla

Message Passing on Trees

The message sent from variable j to i 2 N(j) is

mj!i(xi) =
X

xj

 j(xj) ij(xi, xj)
Y

k2N(j)/i

mk!j(xj)

Each message mj!i(xi) is a vector with one value for each state of xi.
Prob Learning (UofT) CSC412-Week 4-1/2 12 / 18

O 1

a lait

Inference in Trees: Compute p(x1|x̄2, x̄4, x̄5)

mj!i(xi) =
X

xj

 j(xj) ij(xi, xj)
Y

k2N(j)/i

mk!j(xj)

b(xi) / i(xi)
Y

j2N(i)

mj!i(xi).

m5!3(x3) = 5(x̄5) 35(x3, x̄5)

m2!1(x1) = 2(x̄2) 12(x1, x̄2)

m4!3(x3) = 4(x̄4) 34(x3, x̄4)

m1!3(x3) =
P

x1
 1(x1) 13(x1, x3)m2!1(x1)

b(x3) / 3(x3)m1!3(x3)m4!3(x3)m5!3(x3)
This is the same as variable elimination, so

p(x3|x̄2, x̄4, x̄5) = b(x3)

Prob Learning (UofT) CSC412-Week 4-1/2 13 / 18

Belief Propagation on Trees

Belief Propagation Algorithm on Trees
Choose root r arbitrarily

Pass messages from leafs to r

Pass messages from r to leafs

These two passes are su�cient on trees!

Compute beliefs (marginals)

b(xi) / i(xi)
Y

j2N (i)

mj!i(xi), 8i

One can compute them in two steps:

Compute unnormalized beliefs b̃(xi) =/= i(xi)
Q

j2N (i)mj!i(xi)

Normalize them b(xi) = b̃(xi)/
P

xi
b̃(xi).

Prob Learning (UofT) CSC412-Week 4-1/2 14 / 18

431 3 Ysz
Exam
Phil

135151 PIXjl.nl

tail

Loopy Belief Propagation

What if the graph (MRF) we have is not a tree and have cycles?

Keep passing messages until convergence.

This is called Loopy Belief Propagation.

This is like when someone starts a rumour and then hears the same
rumour from someone else, making them more certain it’s true.

We won’t get the exact marginals, but an approximation.

But turns out it is still very useful!

Prob Learning (UofT) CSC412-Week 4-1/2 15 / 18

i

Loopy Belief Propagation

Loopy BP:
Initialize all messages uniformly:

mi!j(xj) = [1/k, ..., 1/k]>

where k is the number of states xj can take.
Keep running BP updates until it “converges”:

mj!i(xi) =
X

xj

 j(xj) ij(xi, xj)
Y

k2N(j) 6=i

mk!j(xj)

and normalize for stability.
It will generally not converge, but that’s generally ok.
Compute beliefs

b(xi) / i(xi)
Y

j2N (i)

mj!i(xi).

This algorithm is still very useful in practice, without any theoretical
guarantee (other than trees).

Prob Learning (UofT) CSC412-Week 4-1/2 16 / 18

Sum-product vs. Max-product

The algorithm we learned is called sum-product BP and
approximately computes the marginals at each node.

For MAP inference, we maximize over xj instead of summing over
them. This is called max-product BP.

BP updates take the form

mj!i(xi) = max
xj

 j(xj) ij(xi, xj)
Y

k2N(j) 6=i

mk!j(xj)

After BP algorithm converges, the beliefs are max-marginals

b(xi) / i(xi)
Y

j2N (i)

mj!i(xi).

MAP inference:
x̂i = argmax

xi
b(xi).

Prob Learning (UofT) CSC412-Week 4-1/2 17 / 18

Summary

This algorithm is still very useful in practice, without any
theoretical guarantee (other than trees).

Loopy BP multiplies the same potentials multiple times. It is
often over-confident.

BP can oscillate, but may be still useful.

It often works better if we normalize messages, and use
momentum.

The algorithm we learned is called sum-product BP. If we are
interested in MAP inference, we can maximize over xj instead of
summing over them. This is called max-product BP.

Prob Learning (UofT) CSC412-Week 4-1/2 18 / 18

