
Week 32 Exact Inference
Suggested Reading

Murphy: Chapter 20
MacKay: Chapter 21.1 (worked example with numbers)
MacKay: Chapter 16 Message Passing, including soldier intuition)
MacKay: Chapter 26 Exact Inference on Factor Graphs

Overview

Variable elimination (VE
Complexity of VE

Inference as Conditional Distribution
In this lecture, we will explore inference in probabilistic graphical models (PGM.

Let

where  is the set of random variables in our model that are neither part of the query nor the evidence. 
For inference we will marginalize out these extraneous variables, focussing on the joint distribution over evidence and
subject of inference:

In particular, for inference will focus computing the conditional probability distribution

XE = The observed evidence
XF = The unobserved variable we want to infer
XR = X − {XF , XE} =  Remaining variables, extraneous to query

XR

p(XF , XE) =∑
XR

p(XF , XE, XR)

https://en.wikipedia.org/wiki/Statistical_inference


Note that the conditional distributions can be computed by marginalizing over all the other variables, including
extraneous, in our model's joint distribution.

The subject of this lecture will be concerned with how to efficiently marginalize over all variables.

We will see that the order which variables are marginalized over can considerably affect the computational cost, and
doing the marginalization naively can incur an exponential cost in the number of random variables.

Variable elimination
Variable elimination is

A simple and general exact inference algorithm in any probabilistic graphical model 
(though we focus on Directed Acyclic Graphical models).
Has computational complexity that depends on the graph structure of the model. 
We saw last lecture that the graph structure corresponds to independence assumptions encoded into the model.
Can use dynamic programming to avoid enumerating all variable assignments.

Simple Example: Chain

Lets start with the example of a simple chain

where we want to compute , with no observations for other variables.

We have

p(XF |XE) =
p(XF , XE)

p(XE)
=

p(XF , XE)

∑XF
p(XF , XE)

p(XF , XE) =∑
XR

p(XF , XE, XR)

A → B → C → D

P(D)

XF = {D},  XE = {},  XR = {A, B, C}

https://en.wikipedia.org/wiki/Variable_elimination
https://en.wikipedia.org/wiki/Dynamic_programming


We saw last lecture that this graphical model describes the factorization of the joint distribution as:

If the goal is to compute the marginal distribution  with no observed variables then we marginalize over all variables
but :

However, if we do this sum naively, it will be exponential :

In particular, we are summing over the elements of  for every term in the sum over elements in  
.

Instead, if we choose a different order for the sums, or elimination ordering:

we reduce the complexity by first computing terms that appear across the other marginalization sums.

So, by using dynamic programming to do the computation inside out instead of outside in, we have done inference over
the joint distribution represented by the chain without generating it explicitly. The cost of performing inference on the

p(A, B, C, D) = p(A)p(B|A)p(C|B)p(D|C)

p(D)

D

p(D) = ∑
A,B,C

p(A, B, C, D)

O(kn)

p(D) = ∑
A,B,C

p(A, B, C, D)

=∑
C

∑
B

∑
A

p(A)p(B|A)p(C|B)p(D|C)

A B

p(D) = ∑
C,B,A

p(A, B, C, D)

=∑
C

p(D|C)∑
B

p(C|B)∑
A

p(A)p(B|A)

P(D) =∑
C

p(D|C)∑
B

p(C|B)∑
A

p(A)p(B|A)

=∑
C

p(D|C)∑
B

p(C|B)P(B)

=∑
C

p(D|C)P(C)



chain in this manner is . In comparison, generating the full joint distribution and marginalizing over it has complexity
!

Simple Example: DGM

Lets take the DGM we saw in lecture 3

To answer the inference question, observing the state of a random variable , what is ?

The  denotes that the variable is observed.

First, recall that the above graphical model describes a factorization of the joint distribution encoding independence
between variables:

Where the random variables under the joint distribution are inferred, observed, or marginalized respectively:

O(nk2)

O(kn)

X6 = x̄6 p(X1|x̄6)

x̄

p(x1, … , x6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)

 XF = {x1}, XE = {x6},  XR = {x2, x3, x4, x5}



and

to compute , we use variable elimination

Note that  does not need to participate in .

Finally,

So, we've seen that the complexity of variable elimination is related to the elimination ordering. 
Unfortunately, finding the best elimination ordering is NP-hard. 
Though, there are some heuristics.

p(XF |XE) =
∑XR

p(XF , XE, XR)

∑XF ,XR
p(XF , XE, XR)

⇒ p(x1|x̄6) =
p(x1, x̄6)

p(x̄6)

=
p(x1, x̄6)

∑x∈XF ,XR
p(x, x̄6)

p(x1, x̄6)

p(x1, x̄6) = p(x1)∑
x2

∑
x3

∑
x4

∑
x5

p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x̄6|x2, x5)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)∑
x4

p(x4|x2)∑
x5

p(x5|x3)p(x̄6|x2, x5)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)∑
x4

p(x4|x2)p(x̄6|x2, x3)

p(x̄6|x2, x3) ∑x4

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)p(x̄6|x2, x3)∑
x4

p(x4|x2)

= p(x1)∑
x2

p(x2|x1)∑
x3

p(x3|x1)p(x̄6|x2, x3)

= p(x1)∑
x2

p(x2|x1)p(x̄6|x1, x2)

= p(x1)p(x̄6|x1)

p(x1|x̄6) =
p(x1)p(x̄6|x1)

∑x1
p(x1)p(x̄6|x1)



Intermediate Factors

In the above examples, each time we eliminated a variable it resulted in a new conditional or marginal distribution. 
However, in general eliminating does not produce a valid marginal or conditional distribution of the graphical model.

Consider the distribution given by

Suppose we want to marginalize over :

However, the resulting term  does not correspond to a valid conditional or marginal distribution
because it is unnormalized.

For this reason we introduce factors  which are not necessarily normalized distributions, but which describe the local
relationship between random variables.

In the above example:

p(X, A, B, C) = p(X)p(A|X)p(B|A)p(C|B, X)

X

p(A, B, C) =∑
X

p(X)p(A|X)p(B|A)p(C|B, X)

= p(B|A)∑
X

p(X)p(A|X)p(C|B, X)

∑X p(X)p(A|X)p(C|B, X)

ϕ

∑



In this case the original conditional distributions are represented by factors over all variables involved. 
This obfuscates the dependence relationship between the variables encoded by the conditional distribution. 
Following marginalizing over  we introduce a new factor, denoted by  over the remaining variables.

Note that for directed acyclic graphical models, who are defined by factorizing the joint into conditional distributions, we
introduce intermediate factors to only be careful about notation.

However, there are other kinds of graphical models (e.g. undirected graphical models, and factor graphs) that are not
represented by factorizing the joint into a product of conditional distributions. 
Instead, they factorize into a product of local factors, which will need to be normalized.

By introducing factors, even for DAGs, we can write the variable elimination algorithm for any probabilistic graphical
model:

Sum-Product Inference

Computing  for directed and undirected models is given by sum-product inference algorithm

where  is a set of potentials or factors.

For directed models,  is given by the conditional probability distributions for all variables

p(A, B, C) =∑
X

p(X)p(A|X)p(B|A)p(C|B, X)

=∑
X

ϕ(X)ϕ(A, X)ϕ(A, B)ϕ(X, B, C)

= ϕ(A, B)∑
X

ϕ(X)ϕ(A, X)ϕ(X, B, C)

= ϕ(A, B)τ(A, B, C)

X τ

P(Y )

τ(Y ) =∑
z

∏
ϕ∈Φ

ϕ(zScope[ϕ]∩Z, yScope[ϕ]∩Y ) ∀Y

Φ

Φ

Φ = {ϕxi
}N

i=1 = {p(xi|parents(xi))}N
i=1



where the sum is over the set . 
The resulting term  will automatically be normalized.

For undirected models,  is given by the set of unnormalized potentials. Therefore, we must normalize the resulting 
by .

Example: Directed Graph

Take the following directed graph as example

This describes a factorization of the joint distribution:

And for notational convenience, we can write the conditional distributions as factors.

If we are interested in inferring the probability of getting a job,  we can perform exact inference on the joint
distribution by marginalizing according to a specific variable elimination ordering.

Example:

Z = X − XF

τ(Y )

Φ τ(Y )

∑Y τ(y)

p(C, D, I, G, S, L, H, J) = p(C)p(D|C)p(I)p(G|D, I)p(L|G)P(S|I)p(J|S, L)p(H|J, G)

Φ = {ϕ(C), ϕ(C, D), ϕ(I), ϕ(G, D, I), ϕ(L, G), ϕ(S, I), ϕ(J, S, L), ϕ(H, J, G)}

P(J)



Elimination Ordering 

Note again that because our original factors correspond to marginal and conditional distributions we do not need to
renormalize the final factor . 
However, if we started with potential factors not from a conditional distribution, we would have to normalize .

Complexity of Variable Elimination Ordering

We discussed previously that variable elimination ordering determines the computational complexity. 
This is due to how many variables appear inside each sum. 
Different elimination orderings will involve different number of variables appearing inside each sum.

The complexity of the VE algorithm is

≺ {C, D, I, H, G, S, L}

p(J) =∑
L

∑
S

ϕ(J, L, S)∑
G

ϕ(L, G)∑
H

ϕ(H, G, J)∑
I

ϕ(S, I)ϕ(I)∑
D

ϕ(G, D, I)∑
C

ϕ(C)ϕ(C, D)

τ(D)

=∑
L

∑
S

ϕ(J, L, S)∑
G

ϕ(L, G)∑
H

ϕ(H, G, J)∑
I

ϕ(S, I)ϕ(I)∑
D

ϕ(G, D, I)τ(D)

τ(G,I)

=∑
L

∑
S

ϕ(J, L, S)∑
G

ϕ(L, G)∑
H

ϕ(H, G, J)∑
I

ϕ(S, I)ϕ(I)τ(G, I)

τ(S,G)

=∑
L

∑
S

ϕ(J, L, S)∑
G

ϕ(L, G)τ(S, G)∑
H

ϕ(H, G, J)

τ(G,J)

=∑
L

∑
S

ϕ(J, L, S)∑
G

ϕ(L, G)τ(S, G)τ(G, J)

τ(J,L,S)

=∑
L

∑
S

ϕ(J, L, S)τ(J, L, S)

τ(J,L)

=∑
L

τ(J, L)

τ(J)

= τ(J)















τ(J)
τ(J)

∑J τ(J)



where

 is the number of initial factors.
 is the number of states each random variable takes (assumed to be equal here).

 is the number of random variables inside each sum .
 is the number of random variables inside the largest sum.

Example: Complexity of Elimination Ordering 

Let us determine the complexity for the example above.

Here are all the initial factors:

So 

Here are all the sums, and the number of random variables that appear in them

O(mkNmax)

m

k

Ni ∑i

Nmax = argmaxiNi

≺ {C, D, I, H, G, S, L}

Φ = {ϕ(C), ϕ(C, D), ϕ(I), ϕ(G, D, I), ϕ(L, G), ϕ(S, I), ϕ(J, S, L), ϕ(H, J, G)}

m = |Φ| = 8

∑



Therefore the largest sum is 

For simplicity, we assume all variables take on  states.

So the complexity of the variable elimination under this ordering is .

Summary

∑
C

ϕ(C)ϕ(C, D)

NC=2

∑
D

ϕ(G, D, I)τ(D)

ND=3

∑
I

ϕ(S, I)ϕ(I)τ(G, I)

NI=3

∑
H

ϕ(H, G, J)

NH=3

∑
G

ϕ(L, G)τ(S, G)τ(G, J)

NG=4

∑
S

ϕ(J, L, S)τ(J, L, S)

NS=3

∑
L

τ(J, L)

NL=2















NG = 4

k

O(8 ∗ k4)


