Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Genome-wide DNA-binding specificity of PIL5, an Arabidopsis basic Helix-Loop-Helix (bHLH) transcription factor

Published: 01 October 2010 Publication History

Abstract

PIL5 is a member of the basic Helix-Loop-Helix (bHLH) transcription factor superfamily. We previously showed that PIL5 binds to the G-box (CACGTG) motif with high affinity. However, since there are many randomly matched G-box motifs throughout the genome, other factors must account for the in-vivo PIL5 binding specificity. In this study, we investigated if in-vivo PIL5 binding sites can be explained by any other attributes extracted from various sources. Our results showed that PIL5 binding sites can be explained by attributes such as neighbouring motif composition, nucleosome density, DNA methylation and distance from transcription start site in addition to G-box.

References

[1]
Atchley, W.R. and Fitch, W.M. (1997) 'A natural classification of the basic helix-loop-helix class of transcription factors', Proc. Natl. Acad. Sci., USA, Vol. 94, pp.5172-5176.
[2]
Atchley, W.R., Terhalle, W. and Dress, A. (1999) 'Positional dependence, cliques, and predictive motifs in the bHLH protein domain', J. Mol. Evol., Vol. 48, pp.501-516.
[3]
Bennetzen, J.L. (2000) 'Transposable element contributions to plant gene and genome evolution', Plant Mol. Biol., Vol. 42, pp.251-269.
[4]
Bieda, M., Xu, X., Singer, M.A., Green, R. and Farnham, P.J. (2006) 'Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome', Genome Res., Vol. 16, pp.595-605.
[5]
Breiman, L. (2001) 'Random forests', Machine Learning, Vol. 45, pp.5-32.
[6]
Chan, S.W., Henderson, I.R. and Jacobsen, S.E. (2005) 'Gardening the genome: DNA methylation in Arabidopsis thaliana', Nat. Rev. Genet., Vol. 6, pp.351-360.
[7]
Cortes, C. and Vapnik, V. (1995) 'Support-vector networks', Machine Learning, Vol. 20, pp.273-297.
[8]
Gewehr, J.E., Szugat, M. and Zimmer, R. (2007) 'BioWeka-extending the Weka framework for bioinformatics', Bioinformatics, Vol. 23, pp.651-653.
[9]
Gomez-Porras, J.L., Riano-Pachon, D.M., Dreyer, I., Mayer, J.E. and Mueller-Roeber, B. (2007) 'Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice', BMC Genomics, Vol. 8, p.260.
[10]
Ji, H. and Wong, W.H. (2005) 'TileMap: create chromosomal map of tiling array hybridizations', Bioinformatics, Vol. 21, pp.3629-3636.
[11]
Jones, S. (2004) 'An overview of the basic helix-loop-helix proteins', Genome Biol., Vol. 5, p.226.
[12]
Kadonaga, J.T. (2004) 'Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors', Cell, Vol. 116, pp.247-257.
[13]
Kass, S.U., Pruss, D. and Wolffe, A.P. (1997) 'How does DNA methylation repress transcription?', Trends Genet, Vol. 13, pp.444-449.
[14]
Klose, R.J. and Bird, A.P. (2006) 'Genomic DNA methylation: the mark and its mediators', Trends Biochem. Sci., Vol. 31, 89-97.
[15]
Ledent, V. and Vervoort, M. (2001) 'The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis', Genome Res., Vol. 11, pp.754-770.
[16]
Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., Guo, J., Liang, W., Chen, L., Yin, J., Ma, H., Wang, J. and Zhang, D. (2006) 'Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis', Plant Physiol., Vol. 141, pp.1167-1184.
[17]
Liu, X.S., Brutlag, D.L. and Liu, J.S. (2002) 'An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments', Nat. Biotechnol., Vol. 20, pp.835-839.
[18]
Murre, C., McCaw, P.S. and Baltimore, D. (1989) 'A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins', Cell, Vol. 56, pp.777-783.
[19]
Nair, S.K. and Burley, S.K. (2000) 'Recognizing DNA in the library', Nature, Vol. 404, No. 715, pp.717-718.
[20]
Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y. and Choi, G. (2009) 'Genome-wide analysis of genes targeted by phytochrome interacting factor 3-like5 during seed germination in arabidopsis', Plant Cell, Vol. 21, pp.403-419.
[21]
Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.I. and Choi, G. (2006) 'Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in arabidopsis', Plant J., Vol. 47, pp.124-139.
[22]
Pang, H., Lin, A., Holford, M., Enerson, B.E., Lu, B., Lawton, M.P., Floyd, E. and Zhao, H. (2006) 'Pathway analysis using random forests classification and regression', Bioinformatics, Vol. 22, pp.2028-2036.
[23]
Roth, F.P., Hughes, J.D., Estep, P.W. and Church, G.M. (1998) 'Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation', Nat. Biotechnol, Vol. 16, pp.939-945.
[24]
Sekinger, E.A., Moqtaderi, Z. and Struhl, K. (2005) 'Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast', Mol. Cell., Vol. 18, pp.735-748.
[25]
Shen, Q., Zhang, P. and Ho, T.H. (1996) 'Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley', Plant Cell, Vol. 8, pp.1107-1119.
[26]
Shimizu, T., Toumoto, A., Ihara, K., Shimizu, M., Kyogoku, Y., Ogawa, N., Oshima, Y. and Hakoshima, T. (1997) 'Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition', EMBO J., Vol. 16, pp.4689-4697.
[27]
Takai, D. and Jones, P.A. (2002) 'Comprehensive analysis of CpG islands in human chromosomes 21 and 22', Proc. Natl. Acad. Sci. USA, Vol. 99, pp.3740-3745.
[28]
Toledo-Ortiz, G., Huq, E. and Quail, P.H. (2003) 'The arabidopsis basic/helix-loop-helix transcription factor family', Plant Cell, Vol. 15, pp.1749-1770.
[29]
van Helden, J., Andre, B. and Collado-Vides, J. (1998) 'Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies', J. Mol. Biol., Vol. 281, pp.827-842.
[30]
Wettenhall, J.M. and Smyth, G.K. (2004) 'Limmagui: a graphical user interface for linear modeling of microarray data', Bioinformatics, Vol. 20, pp.3705-3706.
[31]
Witten, I.H. and Frank, E. (2005) Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed., Morgan Kaufmann, San Francisco.
[32]
Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J. and Jacobsen, S.E. (2007) 'Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis', PLoS Biol., Vol. 5, p.e129.
[33]
Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E. and Ecker, J.R. (2006) 'Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis', Cell, Vol. 126, pp.1189-1201.
[34]
Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. and Henikoff, S. (2007) 'Genome-wide analysis of arabidopsis Thaliana DNA methylation uncovers an interdependence between methylation and transcription', Nat. Genet., Vol. 39, pp.61-69.

Cited By

View all
  • (2018)Prediction of DNA-binding residues from sequence information using convolutional neural networkInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2017.08426517:2(132-152)Online publication date: 23-Dec-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Data Mining and Bioinformatics
International Journal of Data Mining and Bioinformatics  Volume 4, Issue 5
October 2010
129 pages
ISSN:1748-5673
EISSN:1748-5681
Issue’s Table of Contents

Publisher

Inderscience Publishers

Geneva 15, Switzerland

Publication History

Published: 01 October 2010

Author Tags

  1. Arabidopsis
  2. ChIP-chip
  3. DNA binding specificity
  4. DNA methylation
  5. PIL5
  6. bHLH
  7. basic helix-loop-
  8. bioinformatics
  9. g-box motifs
  10. helix
  11. neighbouring motif composition
  12. nucleosome density
  13. phytochrome interacting factor 3-LIKE5
  14. transcription factors

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Prediction of DNA-binding residues from sequence information using convolutional neural networkInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2017.08426517:2(132-152)Online publication date: 23-Dec-2018

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media