Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3265863.3268073acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Exploiting Mobility to Improve Underwater Sensor Networks

Published: 25 October 2018 Publication History

Abstract

Mobility has a dual role in underwater wireless sensor networks. On one hand, it might diminish the performance of networking protocols and impair network connectivity. On the other hand, it might improve data collection and boost networking-based services. In this paper, we discuss the potentials of exploring the controlled mobility of underwater sensor nodes to improve the performance of underwater sensor network applications. We highlight the advantages of the use of the mobility to boost the performance of several networking aspects of underwater sensor networks. Moreover, we discuss some of the challenges and we provide some guidelines when designing mobility-assisted networking protocols for underwater sensor networks. Finally, we point out some future research directions.

References

[1]
K. Akkaya, F. Senel, A. Thimmapuram, and S. Uludag. 2010. Distributed Recovery from Network Partitioning in Movable Sensor/Actor Networks via Controlled Mobility. IEEE Trans. Comput., Vol. 59, 2 (Feb. 2010), 258--271.
[2]
I. F. Akyildiz, D. Pompili, and T. Melodia. 2005. Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, Vol. 3, 3 (2005), 257 -- 279.
[3]
A. Boukerche. 2010. Algorithms and protocols for wireless Sensor networks .John Wiley & Sons, Inc.
[4]
A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro. 2007. Localization systems for wireless sensor networks. IEEE Wireless Communications, Vol. 14, 6 (December 2007), 6--12.
[5]
A. Boukerche, L. A. Villas, D. L. Guidoni, G. Maia, F. D. Cunha, J. Ueyama, and A. A. F. Loureiro. 2013. A New Solution for the Time-space Localization Problem in Wireless Sensor Network Using UAV. In Proc. of the Third ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (DIVANet). 153--160.
[6]
C. B. Cardoso, D. L. Guidoni, B. Y. L. Kimura, and L. A. Villas. 2017. A Hybrid Solution for 3D Location and Time Synchronization in WSN. In Proc. of the 15th ACM International Symposium on Mobility Management and Wireless Access (MobiWac). 105--112.
[7]
R. W. Coutinho, L. F. Vieira, and A. A. Loureiro. 2013a. DCR: Depth-Controlled Routing protocol for underwater sensor networks. In Proc. of the IEEE Symposium on Computers and Communications (ISCC), Vol. 00. 1--6.
[8]
R. W. L. Coutinho and A. Boukerche. 2017. Data Collection in Underwater Wireless Sensor Networks: Research Challenges and Potential Approaches. In Proc. of the 20th ACM Int'l Conf. on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM). 5--8.
[9]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2014a. GEDAR: Geographic and opportunistic routing protocol with Depth Adjustment for mobile underwater sensor networks. In 2014 IEEE International Conference on Communications (ICC). 251--256.
[10]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2014b. Local Maximum Routing Recovery in Underwater Sensor Networks: Performance and Trade-offs. In 2014 IEEE 22nd International Symposium on Modelling, Analysis Simulation of Computer and Telecommunication Systems. 112--119.
[11]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2015. A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, Vol. 34 (2015), 144 -- 156.
[12]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2016a. Design guidelines for opportunistic routing in underwater networks. IEEE Communications Magazine, Vol. 54, 2 (Feb. 2016), 40--48.
[13]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2016b. Geographic and Opportunistic Routing for Underwater Sensor Networks. IEEE Trans. Comput., Vol. 65, 2 (Feb. 2016), 548--561.
[14]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2016c. A Novel Centrality Metric for Topology Control in Underwater Sensor Networks. In Proc. of the 19th ACM Int'l Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM). 205--212.
[15]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2016 d. On the design of green protocols for underwater sensor networks. IEEE Communications Magazine, Vol. 54, 10 (Oct. 2016), 67--73.
[16]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro. 2017. Performance modeling and analysis of void-handling methodologies in underwater wireless sensor networks. Computer Networks, Vol. 126 (2017), 1--14.
[17]
R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A.o A. F. Loureiro. 2018b. Underwater Wireless Sensor Networks: A New Challenge for Topology Control-Based Systems. ACM Comput. Surv., Vol. 51, 1, Article 19 (Jan. 2018), bibinfonumpages36 pages.
[18]
R. W. L. Coutinho, A. Boukerche, and X.S Yu. 2018a. A Novel Location-Based Content Distribution Protocol for Vehicular Named-Data Networks. In Proc of the IEEE Symposium on Computers and Communications (ISCC). Natal, Brazil.
[19]
R. W. L. Coutinho, L. F. M. Vieira, and A. A. F. Loureiro. 2013b. Movement Assisted-topology Control and Geographic Routing Protocol for Underwater Sensor Networks. In Proceedings of the 16th ACM International Conference on Modeling, Analysis & Simulation of Wireless and Mobile Systems (MSWiM '13). 189--196.
[20]
M. Erol, L. F. M. Vieira, and M. Gerla. 2007. AUV-Aided Localization for Underwater Sensor Networks. In International Conference on Wireless Algorithms, Systems and Applications (WASA 2007). 44--54.
[21]
P. A. Forero, S. K. Lapic, C. Wakayama, and M. Zorzi. 2014. Rollout Algorithms for Data Storage- and Energy-Aware Data Retrieval Using Autonomous Underwater Vehicles. In Proc. of the International Conference on Underwater Networks & Systems (WUWNET). Article 22, bibinfonumpages8 pages.
[22]
P. Gjanci, C. Petrioli, S. Basagni, C. A. Phillips, L. Bölöni, and D. Turgut. 2018. Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks. IEEE Transactions on Mobile Computing, Vol. 17, 2 (Feb 2018), 404--418.
[23]
J. Heidemann, M. Stojanovic, and M. Zorzi. 2012. Underwater sensor networks: applications, advances and challenges. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 370, 1958 (2012), 158--175.
[24]
J. Jaffe and C. Schurgers. 2006. Sensor Networks of Freely Drifting Autonomous Underwater Explorers. In Proc. of the 1st ACM International Workshop on Underwater Networks (WUWNet). 93--96.
[25]
K. Kawaguchi, Y. Kaneda, and E. Araki. 2008. The DONET: A real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring. In Proc. of the MTS/IEEE Kobe Techno-Ocean (OCEANS). 1--4.
[26]
P. Kumar, P. Kumar, P. Priyadarshini, and Srija. 2012. Underwater acoustic sensor network for early warning generation. In Proc. of the Oceans. 1--6.
[27]
H. Maqsood, N. Javaid, A. Yahya, B. Ali, Z. A. Khan, and U. Qasim. 2016. MobiL-AUV: AUV-Aided Localization Scheme for Underwater Wireless Sensor Networks. In Proc. of the 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). 170--175.
[28]
F. J. L. Ribeiro et almbox. 2015. Underwater monitoring system for oil exploration using acoustic sensor networks. Telecomm. Systems, Vol. 58, 1 (Jan 2015), 91--106.
[29]
W. K. G. Seah, Hwee-Xian Tan, Zheng Liu, and M. H. Ang. 2005. Multiple-UUV approach for enhancing connectivity in underwater ad-hoc sensor networks. In Proc. of the OCEANS 2005 MTS/IEEE. 2263--2268 Vol. 3.
[30]
Fatih Senel, Kemal Akkaya, Melike Erol-Kantarci, and Turgay Yilmaz. 2015. Self-deployment of mobile underwater acoustic sensor networks for maximized coverage and guaranteed connectivity. Ad Hoc Networks, Vol. 34 (2015), 170 -- 183.
[31]
M. Stojanovic and J. Preisig. 2009. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, Vol. 47, 1 (January 2009), 84--89.
[32]
Teledyne-Benthos. 2018. http://www.benthos.com.
[33]
L. F. M. Vieira, U. Lee, and M. Gerla. 2010. Phero-trail: a bio-inspired location service for mobile underwater sensor networks. IEEE Journal on Selected Areas in Communications, Vol. 28, 4 (May 2010), 553--563.
[34]
L. F. M. Vieira, M. A. M. Vieira, J. A. M. Nacif, and A. B. Vieira. 2018. Autonomous Wireless Lake Monitoring. Comput. in Science Eng., Vol. 20, 1 (Jan. 2018), 66--75.
[35]
H. Yang et almbox. 2009. Optimization of Energy Efficient Transmission in Underwater Sensor Networks. In Proc. of the IEEE GLOBECOM. 1--6.
[36]
N. K. Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, and N. M. Patrikalakis. 2008. Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming. IEEE Journal of Oceanic Engineering, Vol. 33, 4 (Oct 2008), 522--537.
[37]
H. Zhou, Y. Wu, S. Deng, and H. Huang. 2016. Evaluate the Impact of Mutual Friends and Load Distribution on Epidemic Routing in Delay Tolerant Networks. In Proc. of the 14th ACM International Symposium on Mobility Management and Wireless Access (MobiWac). 43--49.

Cited By

View all
  • (2023)Poster: Connectivity topology generation with degree limitation for UOWNProceedings of the ACM SIGCOMM 2023 Conference10.1145/3603269.3610857(1094-1095)Online publication date: 10-Sep-2023
  • (2023)Underwater Wireless Sensor Networks: Enabling Technologies for Node Deployment and Data Collection ChallengesIEEE Internet of Things Journal10.1109/JIOT.2022.321876610:4(3500-3524)Online publication date: 15-Feb-2023
  • (2022)Reinforcement Learning-Based Trajectory Optimization for Data Muling With Underwater Mobile NodesIEEE Access10.1109/ACCESS.2022.316504610(38774-38784)Online publication date: 2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
MobiWac'18: Proceedings of the 16th ACM International Symposium on Mobility Management and Wireless Access
October 2018
140 pages
ISBN:9781450359627
DOI:10.1145/3265863
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 October 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. mobility management
  2. performance evaluation
  3. underwater sensor networks

Qualifiers

  • Research-article

Acceptance Rates

Overall Acceptance Rate 83 of 272 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Poster: Connectivity topology generation with degree limitation for UOWNProceedings of the ACM SIGCOMM 2023 Conference10.1145/3603269.3610857(1094-1095)Online publication date: 10-Sep-2023
  • (2023)Underwater Wireless Sensor Networks: Enabling Technologies for Node Deployment and Data Collection ChallengesIEEE Internet of Things Journal10.1109/JIOT.2022.321876610:4(3500-3524)Online publication date: 15-Feb-2023
  • (2022)Reinforcement Learning-Based Trajectory Optimization for Data Muling With Underwater Mobile NodesIEEE Access10.1109/ACCESS.2022.316504610(38774-38784)Online publication date: 2022
  • (2022)Review of Underwater Mobile Sensor Network for ocean phenomena monitoringJournal of Network and Computer Applications10.1016/j.jnca.2022.103418205:COnline publication date: 1-Sep-2022
  • (2021)EH-IRSP: Energy Harvesting Based Intelligent Relay Selection ProtocolIEEE Access10.1109/ACCESS.2020.30447009(64189-64199)Online publication date: 2021
  • (2021)A systematic literature review on mobility in terrestrial and underwater wireless sensor networksInternational Journal of Communication Systems10.1002/dac.479934:10Online publication date: 20-Apr-2021
  • (2019)Topology Control for Internet of Underwater ThingsProceedings of the 15th ACM International Symposium on QoS and Security for Wireless and Mobile Networks10.1145/3345837.3355962(79-83)Online publication date: 25-Nov-2019
  • (2019)PCon: A Novel Opportunistic Routing Protocol for Duty-Cycled Internet of Underwater Things2019 IEEE Symposium on Computers and Communications (ISCC)10.1109/ISCC47284.2019.8969725(1-6)Online publication date: Jun-2019
  • (2019)A novel opportunistic power controlled routing protocol for internet of underwater thingsComputer Communications10.1016/j.comcom.2019.10.020Online publication date: Oct-2019

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media