Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3662158.3662825acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article
Open access

Dynamic Size Counting in the Population Protocol Model

Published: 17 June 2024 Publication History

Abstract

The population protocol model describes collections of distributed agents that interact in pairs to solve a common task. We consider a dynamic variant of this prominent model, where we assume that an adversary may change the population size at an arbitrary point in time. In this model we tackle the problem of counting the population size: in the dynamic size counting problem the goal is to design an algorithm that computes an approximation of log n. This estimate can be used to turn static, non-uniform population protocols, i.e., protocols that depend on the population size n, into dynamic and loosely-stabilizing protocols.
Our contributions in this paper are three-fold. Starting from an arbitrary initial configuration, we first prove that the agents converge quickly to a valid configuration where each agent has a constant-factor approximation of log n, and once the agents reach such a valid configuration, they stay in it for a polynomial number of time steps. Second, we show how to use our protocol to define a uniform and loosely-stabilizing phase clock for the population protocol model. Finally, we support our theoretical findings by empirical simulations that show that our protocols work well in practice.

References

[1]
D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R. L. Rivest. 2017. Time-space trade-offs in population protocols. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2560--2579.
[2]
D. Alistarh, J. Aspnes, and R. Gelashvili. 2018. Space-optimal majority in population protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2221--2239. 44.
[3]
D. Alistarh, B. Dudek, A. Kosowski, D. Soloveichik, and P. Uznanski. 2017. Robust detection in leak-prone population protocols. In DNA Computing and Molecular Programming - 23rd International Conference, DNA, 155--171.
[4]
D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. 2006. Computation in networks of passively mobile finite-state sensors. Distributed Comput., 18, 235--253.
[5]
D. Angluin, J. Aspnes, and D. Eisenstat. 2008. Fast computation by population protocols with a leader. Distributed Comput., 21, 183--199.
[6]
A. Arora, S. Dolev, and M. G. Gouda. 1991. Maintaining digital clocks in step. Parallel Process. Lett., 1, 11--18.
[7]
G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser, and P. Kling. 2022. Fast consensus via the unconstrained undecided state dynamics. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, 3417--3429.
[8]
G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser, and P. Kling. 2022. Population protocols for exact plurality consensus: how a small chance of failure helps to eliminate insignificant opinions. In PODC '22: ACM Symposium on Principles of Distributed Computing, 224--234.
[9]
P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser. 2022. Loosely-stabilizing phase clocks and the adaptive majority problem. In 1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND, 7:1--7:17. .SAND.2022.7.
[10]
P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik. 2018. A population protocol for exact majority with o(log5/3 n) stabilization time and theta(log n) states. In 32nd International Symposium on Distributed Computing, DISC, 10:1--10:18.
[11]
P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser, P. Kling, and T. Radzik. 2021. Time-space trade-offs in population protocols for the majority problem. Distributed Comput., 34, 2, 91--111.
[12]
P. Berenbrink, G. Giakkoupis, and P. Kling. 2020. Optimal time and space leader election in population protocols. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC, 119--129. 7713.3384312.
[13]
P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran. 2020. Simulating population protocols in sub-constant time per interaction. In 28th Annual European Symposium on Algorithms, ESA, 16:1--16:22.
[14]
P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach. 2018. Simple and efficient leader election. In 1st Symposium on Simplicity in Algorithms, SOSA, 9:1--9:11.
[15]
P. Berenbrink, D. Kaaser, and T. Radzik. 2019. On counting the population size. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC, 43--52.
[16]
A. Bilke, C. Cooper, R. Elsässer, and T. Radzik. 2017. Brief announcement: population protocols for leader election and exact majority with O(log2 n) states and O(log2 n) convergence time. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC, 451--453. 087858.
[17]
L. Cardelli and A. Csikász-Nagy. 2012. The cell cycle switch computes approximate majority. Scientific reports, 2, 656.
[18]
Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and G. Seelig. 2013. Programmable chemical controllers made from dna. Nature nanotechnology, 8, 10, 755.
[19]
C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. 2006. When birds die: making population protocols fault-tolerant. In Distributed Computing in Sensor Systems, Second IEEE International Conference, DCOSS, 51--66.
[20]
S. Dolev and J. L. Welch. 2004. Self-stabilizing clock synchronization in the presence of byzantine faults. J. ACM, 51, 5, 780--799. 463.
[21]
D. Doty and M. Eftekhari. 2021. A survey of size counting in population protocols. Theor. Comput. Sci., 894, 91--102.
[22]
D. Doty and M. Eftekhari. 2022. Dynamic size counting in population protocols. In 1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND, 13:1--13:18.
[23]
D. Doty and M. Eftekhari. 2019. Efficient size estimation and impossibility of termination in uniform dense population protocols. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC, 34--42.
[24]
D. Doty, M. Eftekhari, L. Gasieniec, E. E. Severson, P. Uznanski, and G. Stachowiak. 2021. A time and space optimal stable population protocol solving exact majority. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS, 1044--1055.
[25]
D. Doty and E. E. Severson. 2021. Ppsim: A software package for efficiently simulating and visualizing population protocols. In Computational Methods in Systems Biology - 19th International Conference, CMSB, 245--253. 78-3-030-85633-5_16.
[26]
L. Gasieniec and G. Stachowiak. 2021. Enhanced phase clocks, population protocols, and fast space optimal leader election. J. ACM, 68, 1, 2:1--2:21.
[27]
L. Gasieniec and G. Stachowiak. 2018. Fast space optimal leader election in population protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2653--2667. 75031.169.
[28]
F. James and L. Moneta. 2020. Review of high-quality random number generators. Computing and Software for Big Science, 4, 2. 4-3.
[29]
D. Kaaser and M. Lohmann. 2024. Dynamic size counting in the population protocol model. Full version of this paper. arXiv: 2405.05137 [cs.DC].
[30]
T. M. Liggett. 1985. Interacting Particle Systems.
[31]
M. Lüscher. 1994. A portable high-quality random number generator for lattice field theory simulations. Computer Physics Communications, 79, 100--110.
[32]
D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. 2008. Computation with finite stochastic chemical reaction networks. Nat. Comput., 7, 4, 615--633.
[33]
Y. Sudo, R. Eguchi, T. Izumi, and T. Masuzawa. 2021. Time-optimal loosely-stabilizing leader election in population protocols. In 35th International Symposium on Distributed Computing, DISC, 40:1--40:17. 1.40.
[34]
Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, H. Kakugawa, and T. Masuzawa. 2012. Loosely-stabilizing leader election in a population protocol model. Theor. Comput. Sci., 444, 100--112.
[35]
Y. Sudo, F. Ooshita, T. Izumi, H. Kakugawa, and T. Masuzawa. 2019. Logarithmic expected-time leader election in population protocol model. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC, 60--62.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
PODC '24: Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing
June 2024
570 pages
ISBN:9798400706684
DOI:10.1145/3662158
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 June 2024

Check for updates

Author Tags

  1. population protocols
  2. size counting
  3. loose stabilization
  4. phase clocks

Qualifiers

  • Research-article

Funding Sources

  • Austrian Federal Ministry for Digital and Economic Affairs, National Foundation for Research, Technology and Development, Christian Doppler Research Association

Conference

PODC '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 740 of 2,477 submissions, 30%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 80
    Total Downloads
  • Downloads (Last 12 months)80
  • Downloads (Last 6 weeks)21
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media