Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

SADnet: Semi-supervised Single Image Dehazing Method Based on an Attention Mechanism

Published: 16 February 2022 Publication History

Abstract

Many real-life tasks such as military reconnaissance and traffic monitoring require high-quality images. However, images acquired in foggy or hazy weather pose obstacles to the implementation of these real-life tasks; consequently, image dehazing is an important research problem. To meet the requirements of practical applications, a single image dehazing algorithm has to be able to effectively process real-world hazy images with high computational efficiency. In this article, we present a fast and robust semi-supervised dehazing algorithm named SADnet for practical applications. SADnet utilizes both synthetic datasets and natural hazy images for training, so it has good generalizability for real-world hazy images. Furthermore, considering the uneven distribution of haze in the atmospheric environment, a Channel-Spatial Self-Attention (CSSA) mechanism is presented to enhance the representational power of the proposed SADnet. Extensive experimental results demonstrate that the presented approach achieves good dehazing performances and competitive running times compared with other state-of-the-art image dehazing algorithms.

References

[1]
Codruta O. Ancuti, Cosmin Ancuti, Chris Hermans, and Philippe Bekaert. 2010. A fast semi-inverse approach to detect and remove the haze from a single image. In Proceedings of the 10th Asian Conference on Computer Vision (ACCV’10). 501–514. DOI:DOI:https://doi.org/10.1007/978-3-642-19309-5_39
[2]
Jun Chin Ang, Andri Mirzal, Habibollah Haron, and Haza Nuzly Abdull Hamed. 2016. Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 13, 5 (2016), 971–989. DOI:DOI:https://doi.org/10.1109/TCBB.2015.2478454
[3]
Dana Berman, Tali Treibitz, and Shai Avidan. 2016. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). 1674–1682. DOI:DOI:
[4]
Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao. 2016. DehazeNet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 25, 11 (2016), 5187–5198. DOI:DOI:https://doi.org/10.1109/TIP.2016.2598681
[5]
Bo-Hao Chen and Shih-Chia Huang. 2015. An advanced visibility restoration algorithm for single hazy images. ACM Trans. Multim. Comput. Commun. Applic. 11 (2015). DOI:DOI:https://doi.org/10.1145/2726947
[6]
Dongdong Chen, Mingming He, Qingnan Fan, Jing Liao, Liheng Zhang, Dongdong Hou, Lu Yuan, and Gang Hua. 2019. Gated context aggregation network for image dehazing and deraining. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV’19). 1375–1383. DOI:DOI:
[7]
Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei Liu, and Tat-Seng Chua. 2017. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 6298–6306. DOI:DOI:
[8]
Xiaofeng Cong, Jie Gui, Kaichao Miao, Jun Zhang, Bing Wang, and Peng Chen. 2020. Discrete haze level dehazing network. In Proceedings of the 28th ACM International Conference on Multimedia (MM’20). New York, NY, 1828–1836. DOI:DOI:https://doi.org/10.1145/3394171.3413876
[9]
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09). 248–255. DOI:DOI:
[10]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv (2018). DOI:DOI:
[11]
Deniz Engin, Anil Genc, and Hazim Kemal Ekenel. 2018. Cycle-dehaze: Enhanced cycleGAN for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’18). 938–9388. DOI:DOI:
[12]
Raanan Fattal. 2008. Single image dehazing. ACM Trans. Graph. 27, 3 (2008). DOI:DOI:
[13]
Raanan Fattal. 2015. Dehazing using color-lines. ACM Trans. Graph. 34, 1 (2015). DOI:DOI:https://doi.org/10.1145/2651362
[14]
Yosef Gandelsman, Assaf Shocher, and Michal Irani. 2019. “Double-DIP”: Unsupervised image decomposition via coupled deep-image-priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19). 11018–11027. DOI:DOI:
[15]
Yuan Gao, Jiayi Ma, and Alan L. Yuille. 2017. Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans. Image Process. 26, 5 (2017), 2545–2560. DOI:DOI:https://doi.org/10.1109/TIP.2017.2675341
[16]
Kristofor B. Gibson, Dung T. Vo, and Truong Q. Nguyen. 2012. An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 21, 2 (2012), 662–673. DOI:DOI:https://doi.org/10.1109/TIP.2011.2166968
[17]
Alona Golts, Daniel Freedman, and Michael Elad. 2020. Unsupervised single image dehazing using dark channel prior loss. IEEE Trans. Image Process. 29 (2020), 2692–2701. DOI:DOI:
[18]
Kaiming He, Jian Sun, and Xiaoou Tang. 2011. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 12 (2011), 2341–2353. DOI:DOI:
[19]
Kaiming He, Jian Sun, and Xiaoou Tang. 2013. Guided image filtering. IEEE Trans. Pattern Mach. Intell. 35, 6 (2013), 1397–1409. DOI:DOI:https://doi.org/10.1109/TPAMI.2012.213
[20]
Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. 2020. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 8 (2020), 2011–2023. DOI:DOI:
[21]
Qi-Xing Huang, Hao Su, and Leonidas Guibas. 2013. Fine-grained semi-supervised labeling of large shape collections. ACM Trans. Graph. 32, 6 (2013). DOI:DOI:https://doi.org/10.1145/2508363.2508364
[22]
Laurent Itti, Christof Koch, and Ernst Niebur. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 11 (1998), 1254–1259. DOI:DOI:https://doi.org/10.1109/34.730558
[23]
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv (2014). DOI:DOI:
[24]
Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. 2017. Semi-supervised deep learning for monocular depth map prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 2215–2223. DOI:DOI:
[25]
Boyun Li, Yuanbiao Gou, Jerry Zitao Liu, Hongyuan Zhu, Joey Tianyi Zhou, and Xi Peng. 2020. Zero-shot image dehazing. IEEE Trans. Image Process. 29 (2020), 8457–8466. DOI:DOI:
[26]
Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng. 2017. AOD-Net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’17). 4780–4788. DOI:DOI:
[27]
Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang. 2019. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28, 1 (2019), 492–505. DOI:DOI:https://doi.org/10.1109/TIP.2018.2867951
[28]
Lerenhan Li, Yunlong Dong, Wenqi Ren, Jinshan Pan, Changxin Gao, Nong Sang, and Ming-Hsuan Yang. 2020. Semi-supervised image dehazing. IEEE Trans. Image Process. 29 (2020), 2766–2779. DOI:DOI:
[29]
Runde Li, Jinshan Pan, Zechao Li, and Jinhui Tang. 2018. Single image dehazing via conditional generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18). 8202–8211. DOI:DOI:
[30]
Xin Li, Lidong Bing, Wai Lam, and Bei Shi. 2018. Transformation networks for target-oriented sentiment classification. arXiv (2018). DOI:DOI:
[31]
Yangxi Li, Han Hu, Jin Li, Yong Luo, and Yonggang Wen. 2020. Semi-supervised online multi-task metric learning for visual recognition and retrieval. In Proceedings of the 28th ACM International Conference on Multimedia (MM’20). 3377–3385. DOI:DOI:https://doi.org/10.1145/3394171.3413948
[32]
Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen. 2019. GridDehazeNet: Attention-based multi-scale network for image dehazing. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’19). 7313–7322. DOI:DOI:
[33]
Yang Liu, Jinshan Pan, Jimmy Ren, and Zhixun Su. 2019. Learning deep priors for image dehazing. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’19). 2492–2500. DOI:DOI:
[34]
Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming Xiang, and Chunhong Pan. 2013. Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’13). 617–624. DOI:DOI:https://doi.org/10.1109/ICCV.2013.82
[35]
Srinivasa G. Narasimhan and Shree K. Nayar. 2002. Vision and the atmosphere. Int. J. Comput. Vis. 48, 3 (2002), 233–254. DOI:DOI:https://doi.org/10.1023/A:1016328200723
[36]
Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang. 2016. Blind image deblurring using dark channel prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). 1628–1636. DOI:DOI:
[37]
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, et al.2017. Automatic differentiation in Pytorch. In Proceedings of the 31st International Conference on Neural Information Processing Systems Workshops (NIPSW’17). 1–4.
[38]
Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. 2020. FFA-Net: Feature fusion attention network for single image dehazing. Proc. 34th AAAI Conf. Artif. Intell. 34, 7 (2020), 11908–11915.
[39]
Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao, and Ming-Hsuan Yang. 2016. Single image dehazing via multi-scale convolutional neural networks. In Proceedings of the 14th European Conference on Computer Vision (ECCV’16). 154–169. DOI:DOI:
[40]
Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun Cao, Wei Liu, and Ming-Hsuan Yang. 2018. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18). 3253–3261. DOI:DOI:
[41]
Wenqi Ren, Jinshan Pan, Hua Zhang, Xiaochun Cao, and Ming-Hsuan Yang. 2020. Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis. 128 (2020), 240259. DOI:DOI:
[42]
Olaf Ronnebergerm, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention (MICCAI’15). 234–241. DOI:DOI:
[43]
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv (2014). DOI:DOI:
[44]
Nasim Souly, Concetto Spampinato, and Mubarak Shah. 2017. Semi supervised semantic segmentation using generative adversarial network. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’17). 5689–5697. DOI:DOI:
[45]
Ziyi Sun, Yunfeng Zhang, Fangxun Bao, Kai Shao, Xinxin Liu, and Caiming Zhang. 2021. ICycleGAN: Single image dehazing based on iterative dehazing model and CycleGAN. Comput. Vis. Image Underst. 203 (2021), 103133. DOI:DOI:
[46]
Robby T. Tan. 2008. Visibility in bad weather from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08). 1–8. DOI:DOI:
[47]
Chang Tang, Xinwang Liu, Pichao Wang, Changqing Zhang, Miaomiao Li, and Lizhe Wang. 2019. Adaptive hypergraph embedded semi-supervised multi-label image annotation. IEEE Trans. Multim. 21, 11 (2019), 2837–2849. DOI:DOI:
[48]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkorei, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). 6000–6010. DOI:DOI:https://doi.org/10.5555/3295222.3295349
[49]
Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. 2017. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 6450–6458. DOI:DOI:
[50]
Ping Wang, Qinglan Fan, Yunfeng Zhang, Fangxun Bao, and Caiming Zhang. 2019. A novel dehazing method for color fidelity and contrast enhancement on mobile Devices. IEEE Trans. Consum. Electron. 65, 1 (2019), 47–56. DOI:DOI:https://doi.org/10.1109/TCE.2018.2884794
[51]
Zhengyang Wang and Shuiwang Ji. 2018. Smoothed dilated convolutions for improved dense prediction. In Proceedings of the 24th ACM International Conference on Knowledge Discovery and Data Mining (KDD’18). 2486–2495. DOI:DOI:https://doi.org/10.1007/s10618-021-00765-5
[52]
Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision (ECCV’18). 286–301. DOI:DOI:
[53]
Hao Wu and Saurabh Prasad. 2018. Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Trans. Image Process. 27, 3 (2018), 1259–1270. DOI:DOI:https://doi.org/10.1109/TIP.2017.2772836
[54]
Qingbo Wu, Wenqi Ren, and Xiaochun Cao. 2020. Learning interleaved cascade of shrinkage fields for joint image dehazing and denoising. IEEE Trans. Image Process. 29 (2020), 1788–1801. DOI:DOI:
[55]
Xitong Yang, Zheng Xu, and Jiebo Luo. 2018. Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18). 7485–7492.
[56]
Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2018. Self-attention generative adversarial networks. arXiv (2018). DOI:DOI:
[57]
He Zhang and Vishal M. Patel. 2018. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18). 3194–3203. DOI:DOI:
[58]
Yanfu Zhang, Li Ding, and Gaurav Sharma. 2017. HazeRD: An outdoor scene dataset and benchmark for single image dehazing. In Proceedings of the IEEE International Conference on Image Processing (ICIP’17). 3205–3209. DOI:DOI:
[59]
Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018. Image super-resolution using very deep residual channel attention networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV’18). 286–301. DOI:DOI:
[60]
Yunfeng Zhang, Ping Wang, Qinglan Fan, Fangxun Bao, Xunxiang Yao, and Caiming Zhang. 2020. Single image numerical iterative dehazing method based on local physical features. IEEE Trans. Circ. Syst. Vid. Technol. 30, 10 (2020), 3544–3557. DOI:DOI:
[61]
Qingsong Zhu, Jiaming Mai, and Ling Shao. 2015. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24, 11 (2015), 3522–3533. DOI:DOI:
[62]
Xiaojin Zhu and Andrew B. Goldberg. 2009. Introduction to Semi-supervised Learning. Morgan and Claypool, San Mateo, CA.

Cited By

View all
  • (2024)An Efficient Attentional Image Dehazing Deep Network Using Two Color Space (ADMC2-net)Sensors10.3390/s2402068724:2(687)Online publication date: 22-Jan-2024
  • (2024)Semi-Supervised Image Dehazing Network Based on Deep LearningComputer Science and Application10.12677/csa.2024.14408914:04(193-200)Online publication date: 2024
  • (2024)Real-world Scene Image Enhancement with Contrastive Domain Adaptation LearningACM Transactions on Multimedia Computing, Communications, and Applications10.1145/3694973Online publication date: 6-Sep-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Multimedia Computing, Communications, and Applications
ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 18, Issue 2
May 2022
494 pages
ISSN:1551-6857
EISSN:1551-6865
DOI:10.1145/3505207
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 February 2022
Accepted: 01 July 2021
Revised: 01 June 2021
Received: 01 December 2020
Published in TOMM Volume 18, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Single image dehazing
  2. practical applications
  3. semi-supervised
  4. attention
  5. deep learning

Qualifiers

  • Research-article
  • Refereed

Funding Sources

  • National Natural Science Foundation of China
  • Natural Science Foundation of Shandong Province
  • Primary Research and Development Plan of Shandong Province
  • Fostering Project of Dominant Discipline and Talent Team of Shandong Province Higher Education Institutions

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)199
  • Downloads (Last 6 weeks)18
Reflects downloads up to 23 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Efficient Attentional Image Dehazing Deep Network Using Two Color Space (ADMC2-net)Sensors10.3390/s2402068724:2(687)Online publication date: 22-Jan-2024
  • (2024)Semi-Supervised Image Dehazing Network Based on Deep LearningComputer Science and Application10.12677/csa.2024.14408914:04(193-200)Online publication date: 2024
  • (2024)Real-world Scene Image Enhancement with Contrastive Domain Adaptation LearningACM Transactions on Multimedia Computing, Communications, and Applications10.1145/3694973Online publication date: 6-Sep-2024
  • (2024)A Low-Density Parity-Check Coding Scheme for LoRa NetworkingACM Transactions on Sensor Networks10.1145/366592820:4(1-29)Online publication date: 8-Jul-2024
  • (2024)Detail-preserving Joint Image UpsamplingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/366524620:8(1-23)Online publication date: 13-Jun-2024
  • (2024)ChirpTransformer: Versatile LoRa Encoding for Low-power Wide-area IoTProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661861(479-491)Online publication date: 3-Jun-2024
  • (2024)Context-detail-aware United Network for Single Image DerainingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/363940720:5(1-18)Online publication date: 22-Jan-2024
  • (2024)LHNetV2: A Balanced Low-Cost Hybrid Network for Single Image DehazingIEEE Transactions on Multimedia10.1109/TMM.2024.337713326(8197-8209)Online publication date: 2024
  • (2024)A comprehensive qualitative and quantitative survey on image dehazing based on deep neural networksNeurocomputing10.1016/j.neucom.2024.128582610(128582)Online publication date: Dec-2024
  • (2024)Combined Light and Dark Priors over Variational Auto-encoder (CLDP-VAE) for single image dehazingInternational Journal of Information Technology10.1007/s41870-024-02356-117:2(975-985)Online publication date: 22-Dec-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media