Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2909132.2909245acmconferencesArticle/Chapter ViewAbstractPublication PagesaviConference Proceedingsconference-collections
research-article

NetFork: Mapping Time to Space in Network Visualization

Published: 07 June 2016 Publication History

Abstract

Dynamic network visualization aims at representing the evolution of relational information in a readable, scalable, and effective way. A natural approach, called 'time-to-time mapping', consists of computing a representation of the network at each time step and animating the transition between subsequent time steps. However, recent literature recommends to represent time-related events by means of static graphic counterparts, realizing the so called 'time-to-space mapping'. This paradigm has been successfully applied to networks where nodes and edges are subject to a restricted set of events: appearances, disappearances, and attribute changes. In this paper we describe NetFork, a system that conveys the timings and the impact of path changes that occur in a routing network by suitable time-to-space metaphors, without relying on the time-to-time mapping adopted by the play-back interfaces of alternative network monitoring tools. A user study and a comparison with the state of the art show that users can leverage on high level static representations to quickly assess the quantity and quality of the path dynamics that took place in the network.

References

[1]
D. Archambault, H. Purchase, and B. Pinaud. Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE TVCG, 17(4):539--552, 2011.
[2]
F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in visualizing dynamic graphs. In EuroVis - STARs. The Eurographics Association, 2014.
[3]
A. Blackwell and T. R. Green. Notational systems -- the cognitive dimensions of notations framework. In J. M. Carroll, editor, HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science, chapter 5, pages 103--134. Morgan Kaufmann, 2003.
[4]
K. Booth and G. Lueker. Testing for the consecutive ones property interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13, 1976.
[5]
U. Brandes and S. R. Corman. Visual unrolling of network evolution and the analysis of dynamic discourse. Information Visualization, 2(1):40--50, 2003.
[6]
U. Brandes and D. Wagner. A bayesian paradigm for dynamic graph layout. In G. Di Battista, editor, GD '97, volume 1353 of LNCS, pages 236--247. Springer, 1997.
[7]
J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner, editors, Drawing Graphs: Methods and Models, LNCS 2025, pages 228--246. Springer, 2001.
[8]
M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel edge splatting for scalable dynamic graph visualization. IEEE TVCG, 17(12):2344--2353, 2011.
[9]
CAIDA Ark. http://www.caida.org/projects/ark/.
[10]
M. Candela, M. Di Bartolomeo, G. Di Battista, and C. Squarcella. Dynamic traceroute visualization at multiple abstraction levels. In S. Wismath and A. Wolff, editors, GD '13, volume 8242 of LNCS, pages 500--511, 2013.
[11]
Y.-J. Chi, R. Oliveira, and L. Zhang. Cyclops: The as-level connectivity observatory. SIGCOMM Comput. Commun. Rev., 38(5):5--16, Sept. 2008.
[12]
L. Colitti, G. Di Battista, F. Mariani, M. Patrignani, and M. Pizzonia. Visualizing interdomain routing with BGPlay. JGAA, 9(1):117--148, 2005.
[13]
C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for graph-based visualization of the evolution of software. In SOFTVIS, pages 77--86, 212--213. ACM, 2003.
[14]
W. Cui, X. Wang, S. Liu, N. Riche, T. Madhyastha, K. L. Ma, and B. Guo. Let it flow: A static method for exploring dynamic graphs. In IEEE Pacific Visualization, pages 121--128, 2014.
[15]
M. Di Bartolomeo, V. Di Donato, M. Pizzonia, C. Squarcella, and M. Rimondini. Discovering high-impact routing events using traceroutes. In Proc. ISCC 2015, pages 295--300, 2015.
[16]
G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.
[17]
P. Eades, X. Lin, and W. F. Smyth. A fast effective heuristic for the feedback arc set problem. IPL, 47:319--323, 1993.
[18]
C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. V. Yee. Graphael: Graph animations with evolving layouts. In G. Liotta, editor, GD '03, volume 2912 of LNCS, pages 98--110. Springer, 2004.
[19]
M. Farrugia and A. Quigley. Effective temporal graph layout: A comparative study of animation versus static display methods. Information Visualization, 10(1):47--64, Jan. 2011.
[20]
A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating Internet routing instabilities. ACM SIGCOMM Computer Communication Review, 34(4):205--218, Aug. 2004.
[21]
C. Friedrich and M. E. Houle. Graph drawing in motion II. In Graph Drawing, GD 2001, volume 2265 of LNCS, pages 220--231. Springer, 2001.
[22]
B. Grunbaum and G. Shephard. The geometry of planar graphs. Cambridge University Press, 1981.
[23]
M. L. Huang, P. Eades, and J. Wang. On-line animated visualization of huge graphs using a modified spring algorithm. J. Vis. Lang. Comput., 9(6):623--645, 1998.
[24]
C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing instability. IEEE/ACM Trans. Netw., 6(5):515--528, 1998.
[25]
A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. IEEE Trans. Computers, 47(11):1297--1309, 1998.
[26]
K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-Wolf. Visualizing the evolution of community structures in dynamic social networks. In EuroVis'11, pages 1061--1070, 2011.
[27]
F. Reitz. A framework for an ego-centered and time-aware visualization of relations in arbitrary data repositories. CoRR, abs/1009.5183, 2010.
[28]
M. Rimondini, C. Squarcella, and G. Di Battista. Towards an automated investigation of the impact of bgp routing changes on network delay variations. In PAM '14, volume 8362 of LNCS, pages 193--203, 2014.
[29]
RIPE NCC. Atlas. http://atlas.ripe.net.
[30]
RIPE NCC. RIPEstat. http://stat.ripe.net.
[31]
RIPE NCC. RIS. http://www.ris.ripe.net.
[32]
G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effectiveness of animation in trend visualization. IEEE TVCG, 14(6):1325--1332, 2008.
[33]
Route Views Project. University of Oregon. http://www.routeviews.org/.
[34]
A. Sallaberry, C. Muelder, and K.-L. Ma. Clustering, visualizing, and navigating for large dynamic graphs. In Graph Drawing, volume 7704 of LNCS, pages 487--498. Springer Berlin Heidelberg, 2013.
[35]
L. Shi, C. Wang, and Z. Wen. Dynamic network visualization in 1.5d. In Visualization Symposium (PacificVis), 2011 IEEE Pacific, pages 179--186, 2011.
[36]
ThousandEyes. Deep Path Analysis (DPA). http://www.thousandeyes.com.
[37]
B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: can it facilitate? International Journal of Human-Computer Studies, 57(4):247--262, 2002.
[38]
Y. Zhang, Z. Mao, and J. Wang. A framework for measuring and predicting the impact of routing changes. In IEEE INFOCOM 2007, pages 339--347, 2007.

Cited By

View all
  • (2023)Social Transparency in Network Monitoring and Security SystemsProceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia10.1145/3626705.3627773(37-53)Online publication date: 3-Dec-2023
  • (2023)Understanding the Relationship Between Behaviours Using Semantic TechnologiesHCI International 2023 Posters10.1007/978-3-031-35998-9_15(103-109)Online publication date: 9-Jul-2023
  • (2022)The State of the Art in BGP Visualization Tools: A Mapping of Visualization Techniques to Cyberattack TypesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.3209412(1-11)Online publication date: 2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
AVI '16: Proceedings of the International Working Conference on Advanced Visual Interfaces
June 2016
400 pages
ISBN:9781450341318
DOI:10.1145/2909132
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 June 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dynamic network visualization
  2. interdomain routing visualization
  3. time-to-space mapping

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

AVI '16

Acceptance Rates

AVI '16 Paper Acceptance Rate 20 of 96 submissions, 21%;
Overall Acceptance Rate 128 of 490 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Social Transparency in Network Monitoring and Security SystemsProceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia10.1145/3626705.3627773(37-53)Online publication date: 3-Dec-2023
  • (2023)Understanding the Relationship Between Behaviours Using Semantic TechnologiesHCI International 2023 Posters10.1007/978-3-031-35998-9_15(103-109)Online publication date: 9-Jul-2023
  • (2022)The State of the Art in BGP Visualization Tools: A Mapping of Visualization Techniques to Cyberattack TypesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.3209412(1-11)Online publication date: 2022
  • (2018)Upstream VisibilityProceedings of the 11th International Symposium on Visual Information Communication and Interaction10.1145/3231622.3231632(80-87)Online publication date: 13-Aug-2018
  • (2016)Temporal Branching Approach for Visual Exploration of Simulation Process in Dynamic NetworksProcedia Computer Science10.1016/j.procs.2016.11.047101(407-415)Online publication date: 2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media