Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Public Access

Biometric Recognition via Eye Movements: Saccadic Vigor and Acceleration Cues

Published: 29 January 2016 Publication History

Abstract

Previous research shows that human eye movements can serve as a valuable source of information about the structural elements of the oculomotor system and they also can open a window to the neural functions and cognitive mechanisms related to visual attention and perception. The research field of eye movement-driven biometrics explores the extraction of individual-specific characteristics from eye movements and their employment for recognition purposes. In this work, we present a study for the incorporation of dynamic saccadic features into a model of eye movement-driven biometrics. We show that when these features are added to our previous biometric framework and tested on a large database of 322 subjects, the biometric accuracy presents a relative improvement in the range of 31.6--33.5% for the verification scenario, and in range of 22.3--53.1% for the identification scenario. More importantly, this improvement is demonstrated for different types of visual stimulus (random dot, text, video), indicating the enhanced robustness offered by the incorporation of saccadic vigor and acceleration cues.

References

[1]
E. Abdulin and O. Komogortsev. 2015. User eye fatigue detection via eye movement behavior. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (2015). ACM, 1265--1270.
[2]
R. A. Abrams, D. E. Meyer, and S. Kornblum. 1989. Speed and accuracy of saccadic eye movements: Characteristics of impulse variability in the oculomotor system. Journal of Experimental Psychology: Human Perception and Performance 15, 529--543.
[3]
A. T. Bahill, M. R. Clark, and L. Stark. 1975. The main sequence, a tool for studying human eye movements. Mathematical Biosciences 24, 191--204.
[4]
A. T. Bahill and J. D. Mcdonald. 1983. Frequency limitations and optimal step size for the two-point central difference derivative algorithm with applications to human eye movement data. IEEE Transactions on Biomedical Engineering BME-30, 191--194.
[5]
A. T. Bahill and L. Stark. 1975. Neurological control of horizontal and vertical components of oblique saccadic eye movements. Mathematical Biosciences 27, 287--298.
[6]
T. A. Bahill, A. Brockenbrough, and B. T. Troost. 1981. Variability and development of a normative data base for saccadic eye movements. Investigative Ophthalmology and Visual Science 21, 116--125.
[7]
R. W. Baloh, A. W. Sills, W. E. Kumley, and V. Honrubia. 1975. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology 25, 1065--1070.
[8]
R. Bednarik, T. Kinnunen, A. Mihaila, and P. Fränti. 2005. Eye-movements as a biometric. In Image Analysis, H. Kalviainen, J. Parkkinen and A. Kaarna (Eds.). Springer, Berlin, 780--789.
[9]
E. Bollen, J. Bax, J. G. van Dijk, M. Koning, J. E. Bos, C. G. S. Kramer, and E. A. van der Velde. 1993. Variability of the main sequence. Investigative Ophthalmology and Visual Science 34, 3700--3704.
[10]
L. Breiman. 2001. Random forests. Machine Learning 45, 5--32.
[11]
G. T. Buswell. 1935. How People Look at Pictures: A Study of the Psychology of Perception in Art. University of Chicago Press, Chicago, IL.
[12]
V. Cantoni, C. Galdi, M. Nappi, M. Porta, and D. Riccio. 2015. GANT: Gaze analysis technique for human identification. Pattern Recognition 48, 1027--1038.
[13]
L. G. Carlton and K. M. Newell. 1988. Force variability and movement accuracy in space-time. Journal of Experimental Psychology: Human Perception and Performance 14, 24--36.
[14]
J. E. S. Choi, P. A. Vaswani, and R. Shadmehr. 2014. Vigor of movements and the cost of time in decision making. Journal of Neuroscience 34, 1212--1223.
[15]
D. X. Cifu, J. R. Wares, K. W. Hoke, P. A. Wetzel, G. Gitchel, and W. Carne. 2015. Differential eye movements in mild traumatic brain injury versus normal controls. Journal of Head Trauma Rehabilitation 30, 21--28.
[16]
H. Collewijn, C. J. Erkelens, and R. M. Steinman. 1988a. Binocular co-ordination of human horizontal saccadic eye movements. Journal of Physiology 404, 157--182.
[17]
H. Collewijn, C. J. Erkelens, and R. M. Steinman. 1988b. Binocular co-ordination of human vertical saccadic eye movements. Journal of Physiology 404, 183--197.
[18]
T. Collins and K. Doré-Mazars. 2006. Eye movement signals influence perception: Evidence from the adaptation of reactive and volitional saccades. Vision Research 46, 3659--3673.
[19]
T. Collins, A. Semroud, E. Orriols, and K. Doreé-Mazars. 2008. Saccade dynamics before, during, and after saccadic adaptation in humans. Investigative Ophthalmology and Visual Science 49, 604--612.
[20]
L. L. di Stasi, A. Antolí, and J. J. Cañas. 2011. Main sequence: An index for detecting mental workload variation in complex tasks. Applied Ergonomics 42, 807--813.
[21]
M. P. Eckstein, B. R. Beutter, B. T. Pham, S. S. Shimozaki, and L. S. Stone. 2007. Similar neural representations of the target for saccades and perception during search. Journal of Neuroscience 27, 1266--1270.
[22]
EYELINK EyeLink 1000 Eye Tracker.
[23]
T. Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 861--874.
[24]
S. J. Fricker. 1971. Dynamic measurements of horizontal eye motion. I. Acceleration and velocity matrices. Investigative Ophthalmology 10, 724--732.
[25]
GOOGLE Google Glass.
[26]
A. M. Haith, T. R. Reppert, and R. Shadmehr. 2012. Evidence for hyperbolic temporal discounting of reward in control of movements. Journal of Neuroscience 32, 11727--11736.
[27]
J. H. Holcomb, H. H. Holcomb, and A. de la Pena. 1977. Selective attention and eye movements while viewing reversible figures. Perceptual and Motor Skills 44, 639--644.
[28]
C. D. Holland and O. V. Komogortsev. 2013a. Complex eye movement pattern biometrics: The effects of environment and stimulus. IEEE Transactions on Information Forensics and Security 8, 2115--2126.
[29]
C. D. Holland and O. V. Komogortsev. 2013b. Complex eye movement pattern biometrics: Analyzing fixations and saccades. In Proceedings of the 2013 International Conference on Biometrics (ICB), 1--8.
[30]
T. Ikeda and O. Hikosaka. 2007. Positive and negative modulation of motor response in primate superior colliculus by reward expectation. Journal of Neurophysiology 98, 3163--3170.
[31]
E. Javal. 1878. Essai sur la physiologie de la lecture. Annales d’Oculistique (79), 97--117, (80), 135--147, 240--274.
[32]
M. A. Just and P. A. Carpenter. 1980. A theory of reading: From eye fixations to comprehension. Psychological Review 87, 329--354.
[33]
P. Kasprowski and J. Ober. 2004. Eye movements in biometrics. In Biometric Authentication, D. Maltoni and A. K. Jain (Eds.). Springer, Berlin, 248--258.
[34]
T. Kinnunen, F. Sedlak, and R. Bednarik. 2010. Towards task-independent person authentication using eye movement signals. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications. ACM, 187--190.
[35]
O. Komogortsev, C. Holland, A. Karpov, and L. R. Price. 2014b. Biometrics via oculomotor plant characteristics: impact of parameters in oculomotor plant model. ACM Transactions on Applied Perception 11, 1--17.
[36]
O. V. Komogortsev and C. D. Holland. 2014. The application of eye movement biometrics in the automated detection of mild traumatic brain injury. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (2014). ACM, 1711--1716.
[37]
O. V. Komogortsev, C. D. Holland, and A. Karpov. 2014a. Template aging in eye movement-driven biometrics. In SPIE, Biometric and Surveillance Technology for Human and Activity Identification XI, 90750A--90750A--90759.
[38]
O. V. Komogortsev, A. Karpov, and C. D. Holland. 2015. Attack of mechanical replicas: Liveness detection with eye movements. IEEE Transactions on Information Forensics and Security 10, 716--725.
[39]
O. V. Komogortsev, A. Karpov, C. D. Holland, and H. P. Proenca. 2012b. Multimodal ocular biometrics approach: A feasibility study. In IEEE 5th International Conference on Biometrics: Theory, Applications and Systems (BTAS), 209--216.
[40]
O. V. Komogortsev, A. Karpov, L. R. Price, and C. Aragon. 2012a. Biometric authentication via oculomotor plant characteristics. In Proceedings of the 5th IAPR International Conference on Biometrics (ICB), 413--420.
[41]
E. Kowler, E. Anderson, B. Dosher, and E. Blaser. 1995. The role of attention in the programming of saccades. Vision Research 35, 1897--1916.
[42]
R. J. Leigh and D. S. Zee. 2006. The Neurology of Eye Movements. Oxford University Press.
[43]
S. Marcel, M. S. Nixon, and S. Z. Li. 2014. Handbook of Biometric Anti-Spoofing: Trusted Biometrics under Spoofing Attacks. Springer.
[44]
W. H. R. Miltner, S. Krieschel, H. Hecht, R. Trippe, and T. Weiss. 2004. Eye movements and behavioral responses to threatening and nonthreatening stimuli during visual search in phobic and nonphobic subjects. Emotion 4, 323--339.
[45]
K. Nandakumar, C. Yi, S. C. Dass, and A. K. Jain. 2008. Likelihood ratio-based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 342--347.
[46]
M. Nawrot, B. Nordenstrom, and A. Olson. 2004. Disruption of eye movements by ethanol intoxication affects perception of depth from motion parallax. Psychological Science 15, 858--865.
[47]
K. Niinuma, P. Unsang, and A. K. Jain. 2010. Soft biometric traits for continuous user authentication. IEEE Transactions on Information Forensics and Security 5, 771--780.
[48]
D. Noton and L. Stark. 1971a. Scanpaths in eye movements during pattern perception. Science (New York, N.Y.) 171, 308--311.
[49]
D. Noton and L. Stark. 1971b. Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Research 11, 929--932.
[50]
I. Rigas, E. Abdulin, and O. Komogortsev. 2015. Towards a multi-source fusion approach for eye movement-driven recognition. Information Fusion, Available online: 20 August 2015.
[51]
I. Rigas, G. Economou, and S. Fotopoulos. 2012a. Biometric identification based on the eye movements and graph matching techniques. Pattern Recognition Letters 33, 786--792.
[52]
I. Rigas, G. Economou, and S. Fotopoulos. 2012b. Human eye movements as a trait for biometrical identification. In IEEE 5th International Conference on Biometrics: Theory, Applications and Systems (BTAS), 217--222.
[53]
I. Rigas and O. V. Komogortsev. 2014. Biometric recognition via probabilistic spatial projection of eye movement trajectories in dynamic visual environments. IEEE Transactions on Information Forensics and Security 9, 1743--1754.
[54]
D. A. Robinson. 1964. The mechanics of human saccadic eye movement. Journal of Physiology 174, 245--264.
[55]
D. D. Salvucci and J. H. Goldberg. 2000. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications (ETRA). ACM, 71--78.
[56]
B. S. Schnitzer and E. Kowler. 2006. Eye movements during multiple readings of the same text. Vision Research 46, 1611--1632.
[57]
A. C. Schutz, D. I. Braun, and K. R. Gegenfurtner. 2011. Eye movements and perception: A selective review. Journal of Vision 11, pii: 9.
[58]
R. Shadmehr, J. J. Orban de Xivry, M. Xu-Wilson, and T.-Y. Shih. 2010. Temporal discounting of reward and the cost of time in motor control. Journal of Neuroscience 30, 10507--10516.
[59]
SMI 2015. RED250-RED500. Retrieved from http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-500.html.
[60]
R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain. 2005. Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27, 450--455.
[61]
THEEYETRIBE. 2015. Eye Tribe Tracker. Retrieved from https://theeyetribe.com/.
[62]
J. G. Thomas. 1969. The dynamics of small saccadic eye movements. Journal of Physiology 200, 109--127.
[63]
TOBII. 2015. Glasses 2, http://www.tobii.com/en/eye-tracking-research/global/landingpages/tobii-glasses-2/.
[64]
R. J. van Beers. 2007. The sources of variability in saccadic eye movements. Journal of Neuroscience 27, 8757--8770.
[65]
A. L. Yarbus. 1967. Eye Movements and Vision. Plenum, New York.
[66]
J. Yingying, P. Yong, L. Bao-Liang, C. Xiaoping, C. Shanguang, and W. Chunhui. 2014. Recognizing slow eye movement for driver fatigue detection with machine learning approach. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), 4035--4041.
[67]
H.-J. Yoon, T. R. Carmichael, and G. Tourassi. 2014. Gaze as a biometric. In SPIE, 903707-903707-903707.
[68]
Y. Zhang and M. Juhola. 2012. On biometric verification of a user by means of eye movement data mining. In Proceedings of the 2nd International Conference on Advances in Information Mining and Management (IMMM 2012), 85--90.
[69]
B. L. Zuber, L. Stark, and G. Cook. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 150, 1459--1460.

Cited By

View all
  • (2024)Individual differences in face salience and rapid face saccadesJournal of Vision10.1167/jov.24.6.1624:6(16)Online publication date: 24-Jun-2024
  • (2024)Unsupervised data labeling and incremental cross-domain training for enhanced hybrid eye gaze estimationProceedings of the 2024 Symposium on Eye Tracking Research and Applications10.1145/3649902.3656367(1-7)Online publication date: 4-Jun-2024
  • (2023)Faces in scenes attract rapid saccadesJournal of Vision10.1167/jov.23.8.1123:8(11)Online publication date: 8-Aug-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Applied Perception
ACM Transactions on Applied Perception  Volume 13, Issue 2
March 2016
90 pages
ISSN:1544-3558
EISSN:1544-3965
DOI:10.1145/2888406
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 January 2016
Accepted: 01 October 2015
Revised: 01 October 2015
Received: 01 June 2015
Published in TAP Volume 13, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Eye movement biometrics
  2. saccadic acceleration
  3. saccadic vigor

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)147
  • Downloads (Last 6 weeks)21
Reflects downloads up to 28 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Individual differences in face salience and rapid face saccadesJournal of Vision10.1167/jov.24.6.1624:6(16)Online publication date: 24-Jun-2024
  • (2024)Unsupervised data labeling and incremental cross-domain training for enhanced hybrid eye gaze estimationProceedings of the 2024 Symposium on Eye Tracking Research and Applications10.1145/3649902.3656367(1-7)Online publication date: 4-Jun-2024
  • (2023)Faces in scenes attract rapid saccadesJournal of Vision10.1167/jov.23.8.1123:8(11)Online publication date: 8-Aug-2023
  • (2023)How Unique do we Move? Understanding the Human Body and Context Factors for User IdentificationProceedings of Mensch und Computer 202310.1145/3603555.3603574(127-137)Online publication date: 3-Sep-2023
  • (2023)Calibration free eye tracking solution for mobile and embedded devicesProceedings of the 2023 Symposium on Eye Tracking Research and Applications10.1145/3588015.3589539(1-3)Online publication date: 30-May-2023
  • (2023)Bridging the Gap: Gaze Events as Interpretable Concepts to Explain Deep Neural Sequence ModelsProceedings of the 2023 Symposium on Eye Tracking Research and Applications10.1145/3588015.3588412(1-8)Online publication date: 30-May-2023
  • (2023)EyeDrive: A Deep Learning Model for Continuous Driver AuthenticationIEEE Journal of Selected Topics in Signal Processing10.1109/JSTSP.2023.323530217:3(637-647)Online publication date: May-2023
  • (2023)User Authentication by Eye Movement Features Employing SVM and XGBoost ClassifiersIEEE Access10.1109/ACCESS.2023.330900011(93341-93353)Online publication date: 2023
  • (2022)Evaluating Eye Movement Event Detection: A Review of the State of the ArtBehavior Research Methods10.3758/s13428-021-01763-755:4(1653-1714)Online publication date: 17-Jun-2022
  • (2022)User Identification Utilizing Minimal Eye-Gaze Features in Virtual Reality ApplicationsVirtual Worlds10.3390/virtualworlds10100041:1(42-61)Online publication date: 6-Sep-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media