Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Ab initio Tertiary Structure Prediction of Proteins

Published: 01 January 2003 Publication History

Abstract

A daunting challenge in the area of computational biology has been to develop a method to theoretically predict the correct three-dimensional structure of a protein given its linear amino acid sequence. The ability to surmount this challenge, which is known as the protein folding problem, has tremendous implications. We introduce a novel ab initio approach for the protein folding problem. The accurate prediction of the three-dimensional structure of a protein relies on both the mathematical model used to mimic the protein system and the technique used to identify the correct structure. The models employed are based solely on first principles, as opposed to the myriad of techniques relying on information from statistical databases. The framework integrates our recently proposed methods for the prediction of secondary structural features including helices and strands, as well as β-sheet and disulfide bridge formation. The final stage of the approach, which culminates in the tertiary structure prediction of a protein, utilizes search techniques grounded on the foundations of deterministic global optimization, powerful methods which can potentially guarantee the correct identification of a protein's structure. The performance of the approach is illustrated with bovine pancreatic trypsin inhibitor protein and the immunoglobulin binding domain of protein G.

References

[1]
Adjiman, C. S. and Floudas, C. A. (1996), Rigorous Convex Underestimators for General Twice-Differentiable Problems. J. Glob. Opt. 9: 23-40.
[2]
Adjiman, C. S., Androulakis, I. P., Maranas, C. D. and Floudas, C. A. (1996), A global optimization method, ¿BB, for Process Design. Comput. Chem. Eng. 20: S419-S424.
[3]
Adjiman, C. S., Androulakis, I. P. and Floudas, C. A. (1997), Global optimization of MINLP problems in process synthesis and design, Comput. Chem. Eng. 21: S445-S450.
[4]
Adjiman, C. S., Dallwig, S., Floudas, C. A. and Neumaier, A. (1998a), A global optimization method for general twice-differentiable NLPs - I. Theoretical advances, Comput. Chem. Eng. 22: 1137- 1158.
[5]
Adjiman, C. S., Androulakis, I. P. and Floudas, C. A. (1998b), A global optimization method for general twice-differentiable NLPs - II. Implementation and computational results, Comput. Chem. Eng. 22: 1159-1179.
[6]
Androulakis, I. P., Maranas, C. D. and Floudas, C. A. (1995), ¿BB: A global optimization method for general constrained nonconvex problems, J. Glob. Opt. 7, 337-363.
[7]
Androulakis, I. P., Maranas, C. D. and Floudas, C. A. (1997), Global minimum potential energy conformation of oligopeptides, J. Glob. Opt. 11(1): 1-34.
[8]
Baldwin, R. L. (1995), Alpha helix formation by peptides of defined sequence, Biophys Chem 55: 127-135.
[9]
Baldwin, R. L. and Rose, G. D. (1999a), Is protein folding hierarchic? I. Local structure and peptide folding, Trends Biochem. Sci. 24: 26-33.
[10]
Baldwin, R. L. and Rose, G. D. (1999b), Is protein folding hierarchic? II. Folding intermediates and transition states, Trends Biochem. Sci. 24: 77-83.
[11]
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R. (1984), Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81: 3684-3690.
[12]
Brünger, A. (1992), X-PLOR, Version 3.1 A system for X-ray Crystallography and NMR. Yale University Press, New Haven, USA.
[13]
Bryant, Z., Pande, V. S. and Rokhsar, D. S. (2000), Mechanical unfolding of a beta-hairpin using molecular dynamics, Biophys J 78: 584-589.
[14]
Caves, L. S. D., Evanseck, J. D. and Karplus, M. (1998), Locally accessible conformations of proteins: Multiple molecular dynamics simulations of cramb in, Protein Sci. 7: 649-666.
[15]
Chan, C.-K., Hu, Y., Takahashi, S., Rousseau, D. L., Eaton, W. A. and Hofrichter, J. (1997), Submillisecond protein folding kinetics studied by ultrarapid mixing, Proc. Nath. Acad. Sci., USA 94: 1779-1784.
[16]
Daggett, V., Li, A. J. and Fersht, A. R. (1998), Combined molecular dynamics and Phi-value analysis of structure-reactivity relationships in the transition state and unfolding pathway of barnase: Structural basis of Hammond and anti-Hammon d effects, J. Am. Chem. Soc. 120: 12740-12754.
[17]
Deisenhofer, J. and Steigemann, W. (1975), Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 A resolution, Acta Crystallogr. Sect B 31: 238-250.
[18]
Dill, K. A. (1999), Polymer principles and protein folding, Prot. Sci. 8: 1166-1180.
[19]
Dinner, A. R., Lazaridis, T. and Karplus, M. (1999), Understanding beta-hairpin formation, Proc. Nath. Acad. Sci., USA 96: 9068-9073.
[20]
Duan, Y. and Kollman, P. A. (1998), Pathways to a protein folding intermediate observed in a 1- microsecond simulation in aqueous s olution, Science 282: 740-744.
[21]
Eyrich, V. A., Standley, D. M., Felts, A. K. and Friesner, R. A. (1999), Protein tertiary structure prediction using a branch and bound algorithm, Proteins 35: 41.
[22]
Floudas, C. A. (1997), Deterministic global optimization in design, control, and computational chemistry. In: Biegler, L., Coleman, T., Conn, A. and Santosa, F. (eds.), Large Scale Optimization with Applications, Part II: Optimal Design and Control, Vol. 93. pp. 129-184.
[23]
Floudas, C. A. (1995), Nonlinear and Mixed-Integer Optimization. New York: Oxford University Press.
[24]
Floudas, C. A. (2000), Deterministic Global Optimization: Theory, Methods and Applications, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht.
[25]
Gallagher, T., Alexander, P., Bryan, P. and Gilliland, G. L. (1994), Two crystal structures of the B1 immunoglobulin-binding domain of Streptococcal protein G and comparison with NMR, Biochemistry 33: 4721-4729.
[26]
Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986) NPSOL 4.0 User's Guide, Systems Optimization Laboratory, Dept. of Operations Research, Stanford University, CA.
[27]
Gronenborn, A. M., Filpula, D. R., Essig, N. Z., Achari, A., Whitlow, M., Wingfield, P. T. and Clore, G. M. (1991), A novel highly stable fold of the immunoglobulin binding domain of streptococcal protein G Science 253: 657-660.
[28]
Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997), Torsion angle dynamics for NMR structure calculation with the new program DYANA, J. Mol. Biol. 273: 283-298.
[29]
Hamada, D., Segawa, S. and Goto, Y. (1996) Non-native alpha helical intermediate in the refolding of beta-lactoglobulin: A predominantly beta sheet protein, Nat Struct Biol 3: 868-873.
[30]
Hertz, D., Adjiman, C. S. and Floudas, C. A. (1999), Two results on bounding the roots of interval polynomials, Comput. Chem. Eng 23: 1333-1339.
[31]
Jain, A., Vaidehi, N. and Rodriguez, G. (1993), A fast recursive algorithm for molecular dynamics simulation, J. Comp. Phys. 106: 258-268.
[32]
Kirkpatrick, S., C. D. G. Jr., and Vecchi, M. P. (1983), Optimization by simulated annealing, Science 220: 671-680.
[33]
Klepeis, J. L. and Floudas, C. A. (1999), Free energy calculations for peptides via deterministic global optimization, J Chem Phys 110: 7491-7512.
[34]
Klepeis, J. L. and Floudas, C. A. (2002a), Ab initio prediction of helical segments in polypeptides, J. Comp. Chem. 23: 245-266.
[35]
Klepeis, J. L. and Floudas, C. A. (2002b), Ab initio prediction of ß-sheets and disulfide bridges in polypeptides, Submitted for publication.
[36]
Klepeis, J. L., Androulakis, I. P. Ierapetritou, M. G. and Floudas, C. A. (1998), Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions, Comput. Chem. Eng. 22: 765-788.
[37]
Klepeis, J. L., Floudas, C. A., Morikis, D. and Lambris, J. D. (1999), Predicting peptide structures using NMR data and deterministic global optimization, J Comp Chem 20: 1354-1370.
[38]
Klepeis, J. L., Pieja, M. T. and Floudas, C. A. (2002), Algorithmic improvements for protein structure prediction via deterministic global optimization, (in preparation).
[39]
Lee, J., Scheraga, H. A. and Rackovsky, S. (1997), New optimization method for conformational energy calculations on polypeptides: Conformational space annealing, J Comp Chem 18: 1222- 1232.
[40]
Lim, W. A. and Sauer, R. T. (1991), The role of internal packing interactions in determining the structure and stability of a protein, J Mol Biol 219: 359-376.
[41]
Maranas, C. D. and Floudas, C. A. (1992), A global optimization approach for Lennard-Jones microclusters, J. Chem. Phys. 97(10): 7667-7677.
[42]
Maranas, C. D. and Floudas C. A. (1993), Global optimization for molecular conformation problems, Annals of Operations Research 42: 85-117.
[43]
Maranas, C. D. and Floudas, C. A. (1994a), A deterministic global optimization approach for molecular structure determination, J. Chem. Phys. 100(2): 1247-1261.
[44]
Maranas, C. D. and Floudas, C. A. (1994b), Global minimum potential energy conformations of small molecules, J. Glob. Opt. 4: 135-170.
[45]
Maranas, C. D., Androulakis, I. P. and Floudas, C. A., (1996), A deterministic global optimization approach for the protein folding problem, in: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 23. pp. 133-150.
[46]
Munoz, V. and Serrano, L. (1994), Elucidating the folding problem of helical peptides using empirical parameters, Nat Struct Biol 1: 399-409.
[47]
Munoz, V., Thompson, P. A., Hofrichter, J. and Eaton, W. A. (1997), Folding dynamics and mechanism of beta-hairpin formation, Nature 390: 196-199.
[48]
Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S. and Scheraga, H. A. (1992), Energy parameters in polypeptides. 10, J. Phys. Chem. 96: 6472.
[49]
Pande, V. S. and Rokhsar, D. S. (1999), Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G, Proc. Nath. Acad. Sci., USA 96: 9062-9067.
[50]
Rice, L. M. and Brünger, A. T. (1994), Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement, Proteins 19: 277-290.
[51]
Scheraga, H., 1996, PACK: Programs for packing polypeptide chains, online documentation.
[52]
Srinivasan, R. and Rose, G. D. (1999), A physical basis for protein secondary structure, Proc. Nath. Acad. Sci., USA 96: 14258-14263.
[53]
Standley, D. M., Eyrich, V. A., Felts, A. K., Friesner, R. A. and McDermott, A. E.: (1999), A branch and bound algorithm for protein structure refinement from sparse NMR data sets, J. Mol. Bio. 285: 1691-1710.
[54]
Wlodawer, A., Walter, J., Huber, R. and Sjolin L. (1984), Structure of bovine trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II, J. Mol. Biol. 180: 301-329.

Cited By

View all
  • (2016)A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature SpaceIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2015.249722613:5(887-900)Online publication date: 1-Sep-2016
  • (2014)Three-dimensional protein structure predictionComputational Biology and Chemistry10.1016/j.compbiolchem.2014.10.00153:PB(251-276)Online publication date: 1-Dec-2014
  • (2012)A Generalization of the Classical źBB Convex Underestimation via Diagonal and Nondiagonal Quadratic TermsJournal of Optimization Theory and Applications10.1007/s10957-012-0033-6154:2(462-490)Online publication date: 1-Aug-2012
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Global Optimization
Journal of Global Optimization  Volume 25, Issue 1
January 2003
135 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 January 2003

Author Tags

  1. Global optimization
  2. Protein folding
  3. Secondary structure
  4. Tertiary structure prediction

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2016)A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature SpaceIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2015.249722613:5(887-900)Online publication date: 1-Sep-2016
  • (2014)Three-dimensional protein structure predictionComputational Biology and Chemistry10.1016/j.compbiolchem.2014.10.00153:PB(251-276)Online publication date: 1-Dec-2014
  • (2012)A Generalization of the Classical źBB Convex Underestimation via Diagonal and Nondiagonal Quadratic TermsJournal of Optimization Theory and Applications10.1007/s10957-012-0033-6154:2(462-490)Online publication date: 1-Aug-2012
  • (2011)Maturity, distance and density (MD2) metrics for optimizing trust prediction for business intelligenceJournal of Global Optimization10.1007/s10898-010-9598-551:2(285-300)Online publication date: 1-Oct-2011
  • (2010)A network flow model for biclustering via optimal re-ordering of data matricesJournal of Global Optimization10.1007/s10898-008-9349-z47:3(343-354)Online publication date: 1-Jul-2010
  • (2010)An improved hybrid global optimization method for protein tertiary structure predictionComputational Optimization and Applications10.1007/s10589-009-9277-y45:2(377-413)Online publication date: 1-Mar-2010
  • (2009)Scatter Search algorithm for Protein Structure PredictionInternational Journal of Bioinformatics Research and Applications10.1504/IJBRA.2009.0286795:5(501-515)Online publication date: 1-Sep-2009
  • (2009)Enhanced bounding techniques to reduce the protein conformational search spaceOptimization Methods & Software10.1080/1055678090275348624:4-5(837-855)Online publication date: 1-Aug-2009
  • (2009)Mathematical modeling and efficient optimization methods for the distance-dependent rearrangement clustering problemJournal of Global Optimization10.1007/s10898-008-9393-845:1(111-129)Online publication date: 1-Sep-2009
  • (2009)A review of recent advances in global optimizationJournal of Global Optimization10.1007/s10898-008-9332-845:1(3-38)Online publication date: 1-Sep-2009

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media