Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems

Published: 01 August 2016 Publication History

Abstract

This paper presents a comparative study of type-2 fuzzy logic systems with respect to interval type-2 and type-1 fuzzy logic systems to show the efficiency and performance of a generalized type-2 fuzzy logic controller (GT2FLC). We used different types of fuzzy logic systems for designing the fuzzy controllers of complex non-linear plants. The theory of alpha planes is used for approximating generalized type-2 fuzzy logic in fuzzy controllers. In the defuzzification process, the Karnik and Mendel Algorithm is used. Simulation results with a type-1 fuzzy logic controller (T1FLC), an interval type-2 fuzzy logic controller (IT2FLC) and with a generalized type-2 fuzzy logic controller (GT2FLC) for benchmark plants are presented. The advantage of using generalized type-2 fuzzy logic in fuzzy controllers is verified with four benchmark problems. We considered different levels of noise, number of alpha planes and four types of membership functions in the simulations for comparison and to analyze the approach of generalized type-2 fuzzy logic systems when applied in fuzzy control.

References

[1]
L. Amador-Angulo, O. Castillo, Comparison of fuzzy controllers for the water tank with type-1 and type-2 fuzzy logic, in: Proceedings of NAFIPS 2013, 2013, pp. 1-6.
[2]
A. Bel, C. Wagner, H. Hagras, Multiobjective optimization and comparison of nonsingleton type-1 and singleton interval type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 21 (2013) 459-476.
[3]
H. Bustince, J. Fernandez, H. Hagras, F. Herrera, Interval type-2 fuzzy sets are generalization of Interval-valued fuzzy sets: torwards a wider on their relationship, IEEE Trans. Fuzzy Syst. (2015) 99.
[4]
O. Castillo, Interval type-2 mamdanifuzzy systems for intelligent control, Springer-Verlang, Berlin, 2012.
[5]
O. Castillo, P. Melin, Springer-Verlag, Berlin, 2008.
[6]
J.R. Castro, O. Castillo, P. Melin, An interval type-2 fuzzy logic toolbox for control applications, in: Proceedings of IEEE Fuzzy System Conference, 2007, pp. 1-6.
[7]
S. Chen, Y. Chang, J. Pan, Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms, IEEE Trans. Fuzzy Syst., 21 (2013) 412-425.
[8]
A. Halder, A. Konar, R. Mandal, A. Chakraborty, P. Bhowmik, N.R. Pal, A.K. Nagar, General and interval type-2 fuzzy face-space approach to emotion recognition, IEEE Trans. Syst. Man, Cybern. Syst., 43 (2013) 587-605.
[9]
C. Hsu, C. Juang, Evolutionary robot wall-following control using type-2 fuzzy controller with species-de-activated continuous ACO, IEEE Trans. Fuzzy Syst., 21 (2013) 100-112.
[10]
B.Q. Hu, C.Y. Wang, On type-2 fuzzy relations and interval-valued type-2 fuzzy sets, Fuzzy Sets Syst., 236 (2014) 1-32.
[11]
Y. Jiang, Y. Tang, An interval type-2 fuzzy model of computing with words, Inf. Sci. (Ny)., 281 (2014) 418-442.
[12]
N.N. Karnik, J.M. Mendel, Operations on Type-2 fuzzy sets, Int. J. Fuzzy Sets Syst., 122 (2001) 327-348.
[13]
N.N. Karnik, J. Mendel, Q. Liang, Type-2 fuzzy logic systems, Int. J. Fuzzy Sets Syst., 7 (1999) 643-658.
[14]
G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Practice Hall, New Jersey, 1995.
[15]
F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Inf. Sci., 178 (2008) 2224-2236.
[16]
L.A. Lucas, T. Centeno, M. Delgado, General type-2 fuzzy inference systems: analysis, design and computational aspects, in: Proceedings of IEEE International Conference on Fuzzy Systems, 2007, pp. 1107-1112.
[17]
O. Linda, M. Manic, General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering, IEEE Trans. Fuzzy System, 20 (2012) 883-897.
[18]
O. Linda, M. Manic, Monotone centroid flow algorithm for type reduction o general type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 20 (2012) 805-819.
[19]
S. Naim, H. Hagras, A general type-2 fuzzy logic based approach for multi-criteria group decision marking, in: Proceedings of 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2013, pp. 1-8.
[20]
P. Melin, C. Gonzalez, J.R. Castro, O. Castillo, Edge detection method for image processing on generalized type-2 fuzzy logic, in:, 99, 2014.
[21]
J.M. Mendel, F. Liu, D. Zhai, α -Plane Representation for type-2 fuzzy sets: theory and applications, IEEE Trans. Fuzzy Syst., 17 (2009) 1189-1207.
[22]
J.M. Mendel, X. Liu, Simplified Interval Type-2 Fuzzy Logic Systems, IEEE Trans. Fuzzy Syst., 21 (2013) 1056-1069.
[23]
J.M. Mendel, Comments on alpha-plane representation for type-2 fuzzy sets: theory and applications, IEEE Trans. Fuzzy Syst., 18 (2010) 229-230.
[24]
J.M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction and new directions, Practice Hall, New Jersey, 2001.
[25]
J.M. Mendel, Computing derivatives in interval type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 12 (2004) 84-98.
[26]
J.M. Mendel, G.C. Mouzouris, Type-2 fuzzy logic system, IEEE Trans. Fuzzy Syst., 7 (1999) 642-658.
[27]
J.M. Mendel, R.I.B. John, Type-2 fuzzy sets made simple, IEEE Trans. Fuzzy Syst., 10 (2002) 117-127.
[28]
J.M. Mendel, Enchanced Kanik-Mendel algorithms, IEEE Trans. Fuzzy Syst., 17 (2009) 923--934.
[29]
J.M. Mendel, F. Liu, D. Zhai, ¿-Plane Representation for type-2 fuzzy sets:theory and applications, IEEE Trans. Fuzzy Syst., 17 (2009).
[30]
J.M. Mendel, On KM algorithms for solving type-2 fuzzy set problems, IEEE Trans. Fuzzy Syst., 21 (2013) 426-446.
[31]
J.M. Mendel, A quantitative comparison of interval type-2 and type1fuzzy logic systems: first results, in: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), 2010, pp. 1-8.
[32]
M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of Type-2, Inf. Control (1976) 312-340.
[33]
M. Pagola, C. Lopez-Molina, J. Fernandez, E. Barrenechea, H. Bustince, Interval type-2 fuzzy sets constructed from several membership functions: application to the fuzzy thresholding algorithm, IEEE Trans. Fuzzy Syst., 21 (2013) 230-244.
[34]
A. Rizzi, L. Livi, H. Tahayori, A. Sadeghian, Matching general type-2 fuzzy sets by comparing vertical slices, in: Proceedings of 2013 Joint IFSA World Congress and NAPFIS Annual Meeting (IFSA/NAPFIS), 2013, pp. 866-871.
[35]
M.A. Sanchez, O. Castillo, J.R. Castro, Generalized Type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42 (2015) 5904-5914.
[36]
M.A. Sanchez, J.R. Castro, O. Castillo, Formation of general type-2 Gaussian membership functions based on the information granule numerical evidence, in: Proceedings of 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA), 2013, pp. 1-6.
[37]
B. Siliciano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control, Springer, London, 2009.
[38]
J.T. Starczewshi, Centroid of triangular and Gaussian type-2 fuzzy sets, Inf. Sci. (Ny), 280 (2014) 289-306.
[39]
J. Yen, R. Langari, On the stability issues of linear Takagi-Sugeno fuzzy models, IEEE Trans. Fuzzy Syst., 6 (1998) 402-410.
[40]
C.-Y. Yeh, W.-H.R. Jeng, S.-J. Lee, An enhanced type-reduction algortithm for type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 19 (2011) 227-240.
[41]
C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices, IEEE Trans. Fuzzy Syst, 18 (2010) 637-660.
[42]
C. Wagner, H. Hagras, Employing zSlices based general type-2 fuzzy sets to model multi level agreement, in: Proceedings of IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), 2011, pp. 50-57.
[43]
C. Wagner, S. Miller, J. Garibaldi, D. Anderson, T. Havens, From interval-valued data to general type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 99 (2014).
[44]
D. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons, IEEE Trans. Fuzzy Syst., 21 (2013) 80-99.
[45]
L.A. Zadeh, The concept of a lingüistic variable and its application to approximate reasoning, Part I, Inf. Sci., 8 (1975) 199-249.
[46]
L.A. Zadeh, The concept of a lingüistic variable and its application to approximate reasoning, Part II, Inf. Sci., 8 (1975) 301-357.
[47]
L.A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Elsevier, 1997.
[48]
L.A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965) 338-353.
[49]
D. Zhai, J. Mendel, Centroid of a general type-2 fuzzy set computed by means of the centroid-flow algorithm, in: Proceedings of IEEE Fuzzy Systems (FUZZ), 2010, pp. 1-8.
[50]
D. Zhai, J. Mendel, Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm, in:, 19, 2011, pp. 401-422.
[51]
L. Zhao, Y. Li, Y. Li, Computing with words for discrete general type-2 fuzzy sets based on α plane, in: Proceedings of 2013 IEEE International Conference on Vehicular Electronics and Safety, 2013, pp. 268-272.
[52]
H. Zhou, H. Ying, A method for deriving the analytical structure of a broad class of typical interval type-2 mamdani fuzzy controllers, IEEE Trans. Fuzzy Syst., 21 (2013) 447-458.

Cited By

View all
  • (2024)Decentralized Periodic Dynamic Event-Triggering Fuzzy Load Frequency Control for Multiarea Nonlinear Power Systems Based on IT2 Fuzzy ModelIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.342949332:10(5815-5826)Online publication date: 1-Oct-2024
  • (2024)Lower Limb Motion Intent Recognition Based on Sensor Fusion and Fuzzy Multitask LearningIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.336438232:5(2903-2914)Online publication date: 9-Feb-2024
  • (2024)First-order rule partitions-based decomposition technique of type-1 and interval type-2 rule-based fuzzy systems for computational and memory efficiencyInformation Sciences: an International Journal10.1016/j.ins.2024.121154680:COnline publication date: 1-Oct-2024
  • Show More Cited By
  1. A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Information Sciences: an International Journal
      Information Sciences: an International Journal  Volume 354, Issue C
      August 2016
      301 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 01 August 2016

      Author Tags

      1. Alpha plane representation
      2. Footprint uncertainty
      3. Fuzzy controller
      4. Generalized type-2 fuzzy logic

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Decentralized Periodic Dynamic Event-Triggering Fuzzy Load Frequency Control for Multiarea Nonlinear Power Systems Based on IT2 Fuzzy ModelIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.342949332:10(5815-5826)Online publication date: 1-Oct-2024
      • (2024)Lower Limb Motion Intent Recognition Based on Sensor Fusion and Fuzzy Multitask LearningIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.336438232:5(2903-2914)Online publication date: 9-Feb-2024
      • (2024)First-order rule partitions-based decomposition technique of type-1 and interval type-2 rule-based fuzzy systems for computational and memory efficiencyInformation Sciences: an International Journal10.1016/j.ins.2024.121154680:COnline publication date: 1-Oct-2024
      • (2024)On the impact of fuzzy-logic based BDI agent model for cyber–physical systems▪Expert Systems with Applications: An International Journal10.1016/j.eswa.2023.122265238:PEOnline publication date: 27-Feb-2024
      • (2024)Fuzzy logic type-2 intelligent moisture control systemExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.121581238:PAOnline publication date: 15-Mar-2024
      • (2024)A combined probabilistic-fuzzy approach for dynamic modeling of traffic in smart citiesComputers and Electrical Engineering10.1016/j.compeleceng.2024.109552119:PAOnline publication date: 1-Oct-2024
      • (2024)The fusion of fuzzy theories and natural language processingApplied Soft Computing10.1016/j.asoc.2024.111818162:COnline publication date: 1-Sep-2024
      • (2024)Contrasting bean analysis system based on YOLOv5 and a neural network model using the interval type-2 fuzzy set approachNeural Computing and Applications10.1007/s00521-024-10217-y36:30(18807-18824)Online publication date: 1-Oct-2024
      • (2023)An interval type-3 fuzzy PID control system design and its application in solid oxide fuel cells power plantJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-23146045:6(11149-11162)Online publication date: 1-Jan-2023
      • (2023)A multiattribute financial time series forecast model based on double hierarchy fuzzy linguistic term setJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-23081045:5(8717-8733)Online publication date: 4-Nov-2023
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media