Self-training on graph neural networks for recommendation with implicit feedback
References
Recommendations
Improving Sequential Recommendation with Attribute-Augmented Graph Neural Networks
Advances in Knowledge Discovery and Data MiningAbstractMany practical recommender systems provide item recommendation for different users only via mining user-item interactions but totally ignoring the rich attribute information of items that users interact with. In this paper, we propose an attribute-...
Course Recommendation Based on Graph Convolutional Neural Network
Advances and Trends in Artificial Intelligence. Theory and ApplicationsAbstractSelecting the right learning content according to learners’ learning abilities and interests is the first and most important factor in achieving good learning performance. Based on the similarity between the course rating data in the Collaborative ...
Using Implicit Feedback for Neighbors Selection: Alleviating the Sparsity Problem in Collaborative Recommendation Systems
WebMedia '17: Proceedings of the 23rd Brazillian Symposium on Multimedia and the WebThe most popular Recommender systems (RSs) employ Collaborative Filtering (CF) algorithms where users explicitly rate items. Based on these ratings, a user-item rating matrix is generated and used to select the items to be recommended for a target user. ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Elsevier Science Publishers B. V.
Netherlands
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
View options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in