Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique

Published: 15 March 2023 Publication History

Abstract

Optimization of multi-modal functions is challenging even for evolutionary and swarm-based algorithms as it requires an efficient exploration for finding the promising region of the search space, and effective exploitation to precisely find the global optimum. Grey Wolf Optimizer (GWO) is a recently developed metaheuristic algorithm that is inspired by nature with a relatively small number of parameters for tuning. However, GWO and most of its variants may suffer from the lack of population diversity, premature convergence, and the inability to preserve a good balance between exploratory and exploitative behaviors. To address these limitations, this work proposes a new variant of GWO incorporating memory, evolutionary operators, and a stochastic local search technique. It further integrates Linear Population Size Reduction (LPSR) technique. The proposed algorithm is comprehensively tested on 23 numerical benchmark functions, high dimensional benchmark functions, 13 engineering case studies, four data classifications, and three function approximation problems. The benchmark functions are mostly taken from the CEC 2005 and CEC 2010 special sessions, and they include rotated, shifted functions. The engineering case studies are from the CEC 2020 real-world non-convex constrained optimization problems. The performance of the proposed GWO is compared with popular metaheuristics, namely, particle swarm optimization (PSO), gravitational search algorithm (GSA), slap swarm algorithm (SSA), differential evolution (DE), self-adaptive differential evolution (SADE), basic GWO and its three recently improved variants. Statistical analysis and Friedman tests have been conducted to thoroughly compare their performance. The obtained results demonstrate that the proposed GWO outperforms the algorithms compared for the benchmark functions and engineering case studies tested.

References

[1]
Xu X., Tang Y., Li J., Hua C., Guan X., Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy, Appl. Soft Comput. (2015),.
[2]
Qu B.Y., Liang J.J., Suganthan P.N., Niching particle swarm optimization with local search for multi-modal optimization, Inf. Sci. (Ny) 197 (2012) 131–143,.
[3]
Jana B., Mitra S., Acharyya S., Repository and mutation based particle swarm optimization (RMPSO): A new PSO variant applied to reconstruction of gene regulatory network, Appl. Soft Comput. 74 (2019) 330–355,.
[4]
Ahmed R., Mahadzir S., Rozali N.E.B., Biswas K., Matovu F., Ahmed K., Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review, Sustain. Energy Technol. Assessments. 47 (2021).
[5]
Matovu F., Mahadzir S., Ahmed R., Rozali N.E.M., Synthesis and optimization of multilevel refrigeration systems using generalized disjunctive programming, Comput. Chem. Eng. (2022).
[6]
Holland J.H., Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 1975.
[7]
Kirkpatrick S., Gelatt C.D., Vecchi M.P., Optimization by simulated annealing, Science (1983) 80,.
[8]
Eberhart R., Kennedy J., New optimizer using particle swarm theory, in: Proc. Int. Symp. Micro Mach. Hum. Sci, 1995,.
[9]
Storn R., Price K., Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces, 1995.
[10]
Dorigo M., Gambardella L.M., Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Trans. Evol. Comput. (1997),.
[11]
Karaboga D., An Idea Based on Honey Bee Swarm for Numerical Optimization, Erciyes Univ., 2005.
[12]
Erol O.K., Eksin I., A new optimization method: Big Bang-Big Crunch, Adv. Eng. Softw. (2006),.
[13]
Formato R.A., Central force optimization: A new metaheuristic with applications in applied electromagnetics, Prog. Electromagn. Res. (2007),.
[14]
Pinto P.C., Runkler T.A., Sousa J.M.C., Wasp swarm algorithm for dynamic MAX-SAT problems, in: Lect. Notes Comput. Sci, in: Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics, 2007,.
[15]
Yang X.S., Deb S., Cuckoo search via Lévy flights, in: 2009 World Congr. Nat. Biol. Inspired Comput. NABIC 2009 - Proc, 2009,.
[16]
Rashedi E., Nezamabadi-pour H., Saryazdi S., GSA: A gravitational search algorithm, Inf. Sci. (Ny) (2009),.
[17]
Yang X.S., A new metaheuristic bat-inspired algorithm, in: Stud. Comput. Intell., 2010,.
[18]
Yang X.S., algorithm Firefly., Stochastic test functions and design optimization, Int. J. Bio-Inspired Comput. (2010),.
[19]
Gandomi A.H., Alavi A.H., Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul. (2012),.
[20]
Hatamlou A., Black hole: A new heuristic optimization approach for data clustering, Inf. Sci. (Ny) (2013),.
[21]
Mirjalili S., Mirjalili S.M., Lewis A., Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46–61,.
[22]
Mirjalili S., Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl. (2016),.
[23]
Mirjalili S., Lewis A., The whale optimization algorithm, Adv. Eng. Softw. (2016),.
[24]
Tabari A., Ahmad A., A new optimization method: Electro-search algorithm, Comput. Chem. Eng. 103 (2017) 1–11.
[25]
Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H., Harris hawks optimization: Algorithm and applications, Futur. Gener. Comput. Syst. (2019),.
[26]
Alatas B., ACROA: Artificial chemical reaction optimization algorithm for global optimization, Expert Syst. Appl. (2011),.
[27]
Ayyarao T.S.L.V., Ramakrishna N.S.S., Elavarasan R.M., Polumahanthi N., Rambabu M., Saini G., Khan B., Alatas B., War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization, IEEE Access. (2022),.
[28]
Akyol S., Alatas B., Plant intelligence based metaheuristic optimization algorithms, Artif. Intell. Rev. (2017),.
[29]
Alatas B., Bingol H., Comparative assessment of light-based intelligent search and optimization algorithms, Light Eng. (2020),.
[30]
Cartwright H., Swarm intelligence. By james kennedy and russell c eberhart with yuhui shi. Morgan kaufmann publishers: San francisco, 2001. 43.95. xxvii 512 pp. ISBN 1-55860-595-9, Chem. Educ. (2002),.
[31]
Wang J.S., Li S.X., An improved grey wolf optimizer based on differential evolution and elimination mechanism, Sci. Rep. 9 (2019) 1–21,.
[32]
del Valle Y., Venayagamoorthy G.K., Mohagheghi S., Hernandez J.C., Harley R.G., Particle swarm optimization: Basic concepts, variants and applications in power systems, IEEE Trans. Evol. Comput. 12 (2008) 171–195,.
[33]
Mahadzir S., Ahmed R., Parametric optimization of a two stage vapor compression refrigeration system by comparative evolutionary techniques, in: E3S Web Conf. EDP Sciences, 2021, p. 3002.
[34]
Khan S.A., Engelbrecht A.P., A fuzzy particle swarm optimization algorithm for computer communication network topology design, Appl. Intell. (2012),.
[35]
Maldonado Y., Castillo O., Melin P., Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications, Appl. Soft Comput. (2013),.
[36]
Valdez F., Melin P., Castillo O., Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms, Inf. Sci. (Ny) (2014),.
[37]
Dey A., Debnath M., Pandey K.M., Analysis of effect of machining parameters during electrical discharge machining using taguchi-based multi-objective PSO, Int. J. Comput. Intell. Appl. 16 (2017).
[38]
Pradeepkumar D., Ravi V., Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network, Appl. Soft Comput. (2017),.
[39]
Vijay M., Jena D., PSO based neuro fuzzy sliding mode control for a robot manipulator, J. Electr. Syst. Inf. Technol. (2017),.
[40]
Vishnuvarthanan A., Rajasekaran M.P., Govindaraj V., Zhang Y., Thiyagarajan A., An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images, Appl. Soft Comput. (2017),.
[41]
Chua W.X., da Cunha S., Rangaiah G.P., Hidajat K., Design and optimization of Kemira-Leonard process for formic acid production, Chem. Eng. Sci. X. (2019),.
[42]
Parhi S.S., Rangaiah G.P., Jana A.K., A novel vapor recompressed batch extractive distillation: Design and retrofitting, Sep. Purif. Technol. (2021),.
[43]
Biswas K., Rahman M., Almulihi A.H., Alassery F., Al Askary M., Hasan A., Hai T.B., Kabir S.S., Khan A.I., Ahmed R., Uncertainty handling in wellbore trajectory design: a modified cellular spotted hyena optimizer-based approach, J. Pet. Explor. Prod. Technol. (2022) 1–19.
[44]
Al-Amin M., Abdul-Rani A.M., Danish M., Zohura F.T., Rubaiee S., Ahmed R., Ali S., Sarikaya M., Analysis of hybrid HA/CNT suspended-EDM process and multiple-objectives optimization to improve machining responses of 316L steel, J. Mater. Res. Technol. (2021),.
[45]
Al-Amin M., Abdul-Rani A.M., Ahmed R., Shahid M.U., Zohura F.T., Rani M.D.B.A., Multi-objective optimization of process variables for MWCNT-added electro-discharge machining of 316L steel, Int. J. Adv. Manuf. Technol. (2021),.
[46]
Al-Amin M., Abdul-Rani A.M., Ahmed R., Rao T.V.V.L.N., Multiple-objective optimization of hydroxyapatite-added EDM technique for processing of 316L-steel, Mater. Manuf. Process. (2021),.
[47]
Danish M., Al-Amin M., Abdul-Rani A.M., Rubaiee S., Ahmed A., Zohura F.T., Ahmed R., Yildirim M.B., Optimization of hydroxyapatite powder mixed electric discharge machining process to improve modified surface features of 316L stainless steel, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2022) 09544089221111584.
[48]
Danish M., Al-Amin M., Rubaiee S., Abdul-Rani A.M., Zohura F.T., Ahmed A., Ahmed R., Yildirim M.B., Enhanced machining features and multi-objective optimization of CNT mixed-EDM process for processing 316L steel, Int. J. Adv. Manuf. Technol. 120 (2022) 6125–6141.
[49]
Duan H., Ant colony optimization: Principle, convergence and application, 2011,.
[50]
El-Abd M., A hybrid ABC-SPSO algorithm for continuous function optimization, in: In: IEEE SSCI 2011 - Symp. Ser. Comput. Intell. - SIS 2011 2011 IEEE Symp. Swarm Intell, 2011,.
[51]
Zhu G., Kwong S., Gbest-guided artificial bee colony algorithm for numerical function optimization, Appl. Math. Comput. (2010),.
[52]
Abdel-Kader R.F., Hybrid discrete PSO with GA operators for efficient QoS-multicast routing, Ain Shams Eng. J. (2011),.
[53]
Zhang J., Sanderson A.C., JADE: Adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput. (2009),.
[54]
Qin A.K., Suganthan P.N., Self-adaptive differential evolution algorithm for numerical optimization, in: 2005 IEEE Congr. Evol. Comput, IEEE, 2005, pp. 1785–1791.
[55]
Zhang H., Kennedy D.D., Rangaiah G.P., Bonilla-Petriciolet A., Novel bare-bones particle swarm optimization and its performance for modeling vapor–liquid equilibrium data, Fluid Phase Equilib. 301 (2011) 33–45,.
[56]
El-Fergany A.A., Hasanien H.M., Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms, Electr. Power Components Syst. (2015),.
[57]
Mirjalili S., How effective is the grey wolf optimizer in training multi-layer perceptrons, Appl. Intell. (2015),.
[58]
Tu Q., Chen X., Liu X., Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection, IEEE Access. (2019),.
[59]
Song J., Wang J., Lu H., A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting, Appl. Energy. (2018),.
[60]
Jayabarathi T., Raghunathan T., Adarsh B.R., Suganthan P.N., Economic dispatch using hybrid grey wolf optimizer, Energy. 111 (2016) 630–641,.
[61]
Katarya R., Verma O.P., Recommender system with grey wolf optimizer and FCM, Neural Comput. Appl. (2018),.
[62]
Panwar L.K., S. Reddy K., Verma A., Panigrahi B.K., Kumar R., Binary grey wolf optimizer for large scale unit commitment problem, Swarm Evol. Comput. (2018),.
[63]
Yousri D., Thanikanti S.B., Balasubramanian K., Osama A., Fathy A., Multi-objective grey wolf optimizer for optimal design of switching matrix for shaded PV array dynamic reconfiguration, IEEE Access. (2020),.
[64]
Padhy S., Panda S., Mahapatra S., A modified GWO technique based cascade PI-PD controller for AGC of power systems in presence of plug in electric vehicles, Eng. Sci. Technol. An Int. J. (2017),.
[65]
Biswas K., Vasant P.M., Gamez Vintaned J.A., Watada J., Cellular automata-based multi-objective hybrid grey wolf optimization and particle swarm optimization algorithm for wellbore trajectory optimization, J. Nat. Gas Sci. Eng. (2021),.
[66]
Ahmed R., Nazir A., Mahadzir S., Shorfuzzaman M., Islam J., Niching grey wolf optimizer for multimodal optimization problems, Appl. Sci. (2021),.
[67]
Saremi S., Mirjalili S.Z., Mirjalili S.M., Evolutionary population dynamics and grey wolf optimizer, Neural Comput. Appl. (2015),.
[68]
Saxena A., Kumar R., Mirjalili S., A harmonic estimator design with evolutionary operators equipped grey wolf optimizer, Expert Syst. Appl. 145 (2020),.
[69]
Malik M.R.S., Mohideen E.R., Ali L., Weighted distance grey wolf optimizer for global optimization problems, in: 2015 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC 2015, 2016,.
[70]
Guha D., Roy P.K., Banerjee S., Load frequency control of large scale power system using quasi-oppositional grey wolf optimization algorithm, Eng. Sci. Technol. An Int. J. (2016),.
[71]
Long W., Jiao J., Liang X., Tang M., An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization, Eng. Appl. Artif. Intell. 68 (2018) 63–80,.
[72]
Long W., Jiao J., Liang X., Cai S., Xu M., A random opposition-based learning grey wolf optimizer, IEEE Access. 7 (2019) 113810–113825,.
[73]
Tripathi A.K., Sharma K., Bala M., A novel clustering method using enhanced grey wolf optimizer and MapReduce, Big Data Res. (2018),.
[74]
Qais M.H., Hasanien H.M., Alghuwainem S., Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems, Appl. Soft Comput. (2018),.
[75]
Dhargupta S., Ghosh M., Mirjalili S., Sarkar R., Selective opposition based grey wolf optimization, Expert Syst. Appl. (2020),.
[76]
Nadimi-Shahraki M.H., Taghian S., Mirjalili S., An improved grey wolf optimizer for solving engineering problems, Expert Syst. Appl. 166 (2021),.
[77]
Singh N., Singh S.B., A novel hybrid GWO-SCA approach for optimization problems, Eng. Sci. Technol. An Int. J. 20 (2017) 1586–1601,.
[78]
Gaidhane P.J., Nigam M.J., A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems, J. Comput. Sci. 27 (2018) 284–302,.
[79]
Wolpert D.H., Macready W.G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput. (1997),.
[80]
Heris M.K., Particle swarm optimization in MATLAB, 2015, URL: https://yarpiz.com/50/ypea102-particle-swarm-optimization.
[81]
Price K., Storn R.M., Lampinen J.A., Differential Evolution: A Practical Approach To Global Optimization, Springer Science & Business Media, 2006.
[82]
Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw. (2017),.
[83]
Tanabe R., Fukunaga A.S., Improving the search performance of SHADE using linear population size reduction, in: Proc. 2014 IEEE Congr. Evol. Comput. CEC 2014, 2014,.
[84]
Laredo J.L.J., Fernandes C., Merelo J.J., Gagné C., Improving genetic algorithms performance via deterministic population shrinkage, in: Proc. 11th Annu. Genet. Evol. Comput. Conf. GECCO-2009, 2009,.
[85]
Brest J., Sepesy Maučec M., Population size reduction for the differential evolution algorithm, Appl. Intell. (2008),.
[86]
Tang K., Li X., Suganthan P.N., Yang Z., Weise T., Benchmark Functions for the CEC 2010 Special Session and Competition on Large-Scale Global Optimization, Univ. Sci. Technol. China., 2010.
[87]
Suganthan P.N., Hansen N., Liang J.J., Deb K., Chen Y.P., Auger A., Tiwari S., Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Nanyang Technol. Univ. Singapore, IIT Kanpur, India, 2005.
[88]
Li M., Chen H., Shi X., Liu S., Zhang M., Lu S., A multi-information fusion triple variables with iteration inertia weight PSO algorithm and its application, Appl. Soft Comput. (2019),.
[89]
Liang J.J., Qin A.K., Suganthan P.N., Baskar S., Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput. 10 (2006) 281–295,.
[90]
Shi Y., Eberhart R.C., Shi Y., Clerc M., Kaveh A., Zolghadr A., Wang Y., Li B., Weise T., Wang J., Yuan B., Tian Q., Krink T., Vesterstrom J.S., Riget J., Glover F., A modified particle swarm optimizer, Artif. Evol. (1998).
[91]
Jordehi A.R., Enhanced leader PSO (ELPSO): A new PSO variant for solving global optimisation problems, Appl. Soft Comput. (2015),.
[92]
Zhang H., Rangaiah G.P., An efficient constraint handling method with integrated differential evolution for numerical and engineering optimization, Comput. Chem. Eng. (2012),.
[93]
Derrac J., García S., Molina D., Herrera F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18,.
[94]
Long W., Cai S., Jiao J., Tang M., An efficient and robust grey wolf optimizer algorithm for large-scale numerical optimization, Soft Comput. (2020),.
[95]
Kumar A., Wu G., Ali M.Z., Mallipeddi R., Suganthan P.N., Das S., A test-suite of non-convex constrained optimization problems from the real-world and some baseline results, Swarm Evol. Comput. (2020),.
[96]
Talbi E.G., Metaheuristics: From design to implementation, 2009,.
[97]
Coello Coello C.A., Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art, Comput. Methods Appl. Mech. Engrg. (2002),.
[98]
Mirjalili S., Mohd Hashim S.Z., Moradian Sardroudi H., Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Appl. Math. Comput. (2012),.
[99]
McCulloch W.S., Pitts W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. (1943),.
[100]
Hertz J., Krogh A., Palmer R.G., Introduction to the theory of neural computation, 2018,.
[101]
Wong J.Y.Q., Sharma S., Rangaiah G.P., Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria, Appl. Therm. Eng. (2016),.

Cited By

View all
  • (2024)Enhancing population diversity based gaining-sharing knowledge based algorithm for global optimization and engineering design problemsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.123958252:PAOnline publication date: 24-Jul-2024
  • (2024)Multi-strategy learning-based particle swarm optimization algorithm for COVID-19 threshold segmentationComputers in Biology and Medicine10.1016/j.compbiomed.2024.108498176:COnline publication date: 1-Jun-2024
  • (2024)A hybrid grey wolf optimizer for engineering design problemsJournal of Combinatorial Optimization10.1007/s10878-024-01189-947:5Online publication date: 3-Jul-2024
  • Show More Cited By

Index Terms

  1. Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Knowledge-Based Systems
        Knowledge-Based Systems  Volume 264, Issue C
        Mar 2023
        506 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 15 March 2023

        Author Tags

        1. Metaheuristics
        2. Swarm intelligence
        3. Grey Wolf Optimizer
        4. Memory
        5. Evolutionary operators
        6. Stochastic local search
        7. Linear population size reduction
        8. Optimization
        9. Algorithm

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 25 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Enhancing population diversity based gaining-sharing knowledge based algorithm for global optimization and engineering design problemsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.123958252:PAOnline publication date: 24-Jul-2024
        • (2024)Multi-strategy learning-based particle swarm optimization algorithm for COVID-19 threshold segmentationComputers in Biology and Medicine10.1016/j.compbiomed.2024.108498176:COnline publication date: 1-Jun-2024
        • (2024)A hybrid grey wolf optimizer for engineering design problemsJournal of Combinatorial Optimization10.1007/s10878-024-01189-947:5Online publication date: 3-Jul-2024
        • (2023)Manta ray foraging optimization based on mechanics game and progressive learning for multiple optimization problemsApplied Soft Computing10.1016/j.asoc.2023.110561145:COnline publication date: 1-Sep-2023

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media