Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Cyclic games and linear programming

Published: 01 June 2008 Publication History

Abstract

New efficient algorithms for solving infinite-duration two-person adversary games with the decision problem inNP@?coNP, based on linear programming (LP), LP-representations, combinatorial LP, linear complementarity problem (LCP), controlled LP are surveyed.

References

[1]
Andersson, D., An improved algorithm for discounted payoff games. In: Huitink, J., Katrenko, S. (Eds.), Proceedings of the 11th ESSLLI Student Session, Málaga, Spain. pp. 91-98.
[2]
D. Andersson, S. Vorobyov, Fast algorithms for monotonic discounted linear programs with two variables per inequality, Preprint NI06019-LAA, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, May 2006. {http://www.newton.cam.ac.uk/preprints2006.html}.
[3]
E. Beffara, S. Vorobyov, Is randomized Gurvich-Karzanov-Khachiyan's algorithm for parity games polynomial? Technical Report 2001-025, Department of Information Technology, Uppsala University, November 2001. {http://www.it.uu.se/research/reports/}.
[4]
H. Björklund, Combinatorial Optimization for Infinite Games on Graphs, Ph.D. Thesis, Uppsala University, 2005.
[5]
H. Björklund, O. Nilsson, O. Svensson, S. Vorobyov, Controlled linear programming: boundedness and duality, Technical Report DIMACS-2004-56, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ, December 2004. {http://dimacs.rutgers.edu/TechnicalReports/}.
[6]
H. Björklund, O. Nilsson, O. Svensson, S. Vorobyov, The controlled linear programming problem, Technical Report DIMACS-2004-41, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ, September 2004. {http://dimacs.rutgers.edu/TechnicalReports/}.
[7]
Björklund, H., Sandberg, S. and Vorobyov, S., A discrete subexponential algorithm for parity games. In: Alt, H., Habib, M. (Eds.), Twentieth International Symposium on Theoretical Aspects of Computer Science, STACS'2003, Lecture Notes in Computer Science, vol. 2607. Springer, Berlin. pp. 663-674.
[8]
H. Björklund, S. Sandberg, S. Vorobyov, On combinatorial structure and algorithms for parity games, Technical Report 2003-002, Department of Information Technology, Uppsala University, January 2003. {http://www.it.uu.se/research/reports/}.
[9]
Björklund, H., Sandberg, S. and Vorobyov, S., Memoryless determinacy of parity and mean payoff games: A simple proof. Theoret. Comput. Sci. v310 i1-3. 365-378.
[10]
H. Björklund, O. Svensson, S. Vorobyov, Controlled linear programming for infinite games, Technical Report DIMACS-2005-13, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ, April 2005.{http://dimacs.rutgers.edu/TechnicalReports/}.
[11]
H. Björklund, O. Svensson, S. Vorobyov, Linear complementarity algorithms for mean payoff games. Technical Report DIMACS-2005-05, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ, February 2005. {http://dimacs.rutgers.edu/TechnicalReports/}, International Journal of Game Theory, to appear.
[12]
Björklund, H. and Vorobyov, S., Combinatorial structure and randomized subexponential algorithms for infinite games. Theoret. Comput. Sci. v349 i3. 347-360.
[13]
Björklund, H. and Vorobyov, S., A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Appl. Math. v155 i2. 210-219.
[14]
E. Cohen, N. Megiddo, Improved algorithms for linear inequalities with two variables per inequality, in: ACM Annual Symposium on Theory of Computing, 1991, pp. 145-154.
[15]
Condon, A., The complexity of stochastic games. Inform. and Comput. v96. 203-224.
[16]
Cottle, R.W. and Dantzig, G.B., A generalization of the linear complementarity problem. J. Combin. Theory. v8. 79-90.
[17]
Cottle, R.W., Pang, J.-S. and Stone, R.E., The Linear Complementarity Problem. 1992. Academic Press, New York.
[18]
Coxson, G., The P-matrix problem is coNP-complete. Math. Programming. v64. 173-178.
[19]
A Ebiefung, A. and Kostreva, M.M., The generalized linear complementarity problem: least element theory and Z-matrices. J. Global Optim. v11. 151-161.
[20]
Ehrenfeucht, A. and Mycielski, J., Positional games over a graph. Notices Amer. Math Soc. v20. 334
[21]
Ehrenfeucht, A. and Mycielski, J., Positional strategies for mean payoff games. Internat. J. Game Theory. v8. 109-113.
[22]
Emerson, E.A., Model checking and the µ-calculus. In: Immerman, N., Kolaitis, Ph.G. (Eds.), DIMACS Series in Discrete Mathematics, vol. 31. pp. 185-214.
[23]
E.A. Emerson, C.S. Jutla, Tree automata, µ-calculus and determinacy, in: Annual IEEE Symposium on Foundations of Computer Science, 1991, pp. 368-377.
[24]
Fulkerson, D.R. and Harding, G.C., Maximizing the minimum source-sink path subject to a budget constraint. Math. Programming. v13. 116-118.
[25]
B. Gärtner, L. Rüst, Simple stochastic games and P-matrix generalized linear complementarity problem, in: Fundamentals of Computation Theory (FCT), vol. 3623, Lecture Notes in Computer Science, Springer, Berlin, 2005, pp. 209-220.
[26]
Gillette, D., Stochastic games with zero stop probabilities. Contrib. Theory Games. vIII. 179-187.
[27]
Gurvich, V.A., Karzanov, A.V. and Khachiyan, L.G., Cyclic games and an algorithm to find minimax cycle means in directed graphs. U.S.S.R. Comput. Math. Math. Phys. v28 i5. 85-91.
[28]
Hammer, P.L., Simeone, B., Liebling, Th.M. and De Werra, D., From linear separability to unimodality: a hierarchy of pseudo-Boolean functions. SIAM J. Discrete Math. v1 i2. 174-184.
[29]
Hochbaum, D.S. and Naor, J., Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. v23 i6. 1179-1192.
[30]
Hoffman, A.J. and Karp, R.M., On nonterminating stochastic games. Manage. Sci. v12 i5. 359-370.
[31]
Israeli, E. and Wood, R.K., Shortest path network interdiction. Networks. v40 i2. 97-111.
[32]
M. Jurdziński, M. Paterson, U. Zwick, A deterministic subexponential algorithm for solving parity games, in: ACM SODA'06, 2006, pp. 117-123.
[33]
G. Kalai, A subexponential randomized simplex algorithm, in: 24th ACM STOC, 1992, pp. 475-482.
[34]
Kalai, G., Linear programming, the simplex algorithm and simple polytopes. Math. Prog. (Ser. B). v79. 217-234.
[35]
Karzanov, A. and Lebedev, V., Cyclical games with prohibitions. Math. Programming. v60. 277-293.
[36]
L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, J. Zhao, On short path interdiction problems: total and node-wise limited interdiction, RUTCOR Research Report RRR 25-2006, RUTCOR, Rutgers Center of Operations Research, October 2006, Theory Comput. Syst. vol. 43, no. 2, August 2008, to appear.
[37]
L. Khachiyan, V. Gurvich, J. Zhao, Extending Dijkstra's algorithm to maximize the shortest path by node-wise limited arc intediction, RUTCOR Research Report RRR 31-2005, RUTCOR, Rutgers Center of Operations Research, October 2005.
[38]
M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, in: Lecture Notes in Computer Science, vol. 538, Springer, Berlin, 1991.
[39]
J. Matoušek, M. Sharir, M. Welzl, A subexponential bound for linear programming, in: 8th ACM Symposium on Computational Geometry, 1992, pp. 1-8.
[40]
Matoušek, J., Sharir, M. and Welzl, M., A subexponential bound for linear programming. Algorithmica. v16. 498-516.
[41]
N. Megiddo, A note on the complexity of P-matrix LCP and computing the equilibrium, Technical Report RJ 6439 (62557) 9/19/88, IBM Almaden Research Center, 1988.
[42]
Morris, W.D., Randomized pivot algorithms for P-matrix linear complementarity problems. Math. Programming, Ser. A. v92. 285-296.
[43]
Moulin, H., Extensions of two person zero sum games. J. Math. Anal. Appl. v55. 490-508.
[44]
Moulin, H., Prolongements des jeux í deux joueurs de somme nulle. Bull. Soc. Math. France. v45.
[45]
K.G. Murty, F.-T. Yu, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988. {http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/}.
[46]
Pisaruk, N., Mean cost cyclical games. Math. Oper. Res. v24 i4. 817-828.
[47]
Schrijver, A., Theory of Linear and Integer Programming. 1986. Wiley, New York.
[48]
A. Schrijver, Combinatorial Optimization, vols. A-C, Springer, Berlin, 2003.
[49]
Shapley, L.S., Stochastic games. Proc. Nat. Acad. Sci. U.S.A. v39. 1095-1100.
[50]
O. Svensson, Mean payoff games and linear complementarity, in: Proceedings of the ESSLLI'2005, European Summer School on Logic, Language, and Information, Edingburgh, Scotland, August 2005, Kluwer Academic Press, Dordrecht.
[51]
O. Svensson, S. Vorobyov, Linear complementarity and P-matrices for stochastic games, in: 6th International Andrei Ershov Memorial Conference on "Perspectives of System Informatics", Lecture Notes in Computer Science, vol. 4378, Novosibirsk, Russia, 27-30 June 2006, Springer, Berlin, pp. 412-425. Preliminary version: DIMACS TR 2005-20.
[52]
O. Svensson, S. Vorobyov, Linear programming polytope and algorithm for mean payoff games, in: Second International Conference on Algorithmic Aspects in Information and Management, Lecture Notes in Computer Science, vol. 4041, Hong Kong, China, 20-22 June 2006, Springer, Berlin, pp. 64-78, Preliminary version: RUTCOR RRR 34-2005.
[53]
B.P. Szanc, The generalized complementarity problem, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1989.
[54]
Williamson Hoke, K., Completely unimodal numberings of a simple polytope. Discrete Appl. Math. v20. 69-81.
[55]
J. Zhao, V. Gurvich, L. Khachiyan, Extending Dijkstra's algorithm to shortest paths with blocks, Technical Report DIMACS-2005-04, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ, February 2005. {http://dimacs.rutgers.edu/TechnicalReports/}.
[56]
Zwick, U. and The complexity of mean payoff games on graphs, M.Paterson., . Theoret. Comput. Sci. v158. 343-359.

Cited By

View all
  • (2018)An Average Polynomial Algorithm for Solving Antagonistic Games on GraphsJournal of Computer and Systems Sciences International10.1134/S106423071801004557:1(88-96)Online publication date: 1-Jan-2018
  • (2018)Approximation Schemes for Stochastic Mean Payoff Games with Perfect Information and Few Random PositionsAlgorithmica10.1007/s00453-017-0372-780:11(3132-3157)Online publication date: 1-Nov-2018
  • (2017)A nested family of $$\varvec{k}$$-total effective rewards for positional gamesInternational Journal of Game Theory10.1007/s00182-016-0532-z46:1(263-293)Online publication date: 1-Mar-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Discrete Applied Mathematics
Discrete Applied Mathematics  Volume 156, Issue 11
June, 2008
288 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 June 2008

Author Tags

  1. Combinatorial linear programming
  2. Controlled linear programming
  3. Discounted payoff games
  4. Generalized linear complementarity
  5. Iterative improvement
  6. Local search
  7. Longest-shortest paths
  8. Mean payoff
  9. Parity
  10. Simple stochastic
  11. Subexponential algorithms

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)An Average Polynomial Algorithm for Solving Antagonistic Games on GraphsJournal of Computer and Systems Sciences International10.1134/S106423071801004557:1(88-96)Online publication date: 1-Jan-2018
  • (2018)Approximation Schemes for Stochastic Mean Payoff Games with Perfect Information and Few Random PositionsAlgorithmica10.1007/s00453-017-0372-780:11(3132-3157)Online publication date: 1-Nov-2018
  • (2017)A nested family of $$\varvec{k}$$-total effective rewards for positional gamesInternational Journal of Game Theory10.1007/s00182-016-0532-z46:1(263-293)Online publication date: 1-Mar-2017
  • (2014)Polynomial-Time Algorithms for Energy Games with Special Weight StructuresAlgorithmica10.1007/s00453-013-9843-770:3(457-492)Online publication date: 1-Nov-2014
  • (2012)Polynomial-Time algorithms for energy games with special weight structuresProceedings of the 20th Annual European conference on Algorithms10.1007/978-3-642-33090-2_27(301-312)Online publication date: 10-Sep-2012
  • (2011)Stochastic mean payoff gamesProceedings of the 38th international colloquim conference on Automata, languages and programming - Volume Part I10.5555/2027127.2027144(147-158)Online publication date: 4-Jul-2011
  • (2010)A pumping algorithm for ergodic stochastic mean payoff games with perfect informationProceedings of the 14th international conference on Integer Programming and Combinatorial Optimization10.1007/978-3-642-13036-6_26(341-354)Online publication date: 9-Jun-2010

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media