Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Identities for the Ramanujan zeta function

Published: 01 July 2013 Publication History

Abstract

We prove formulas for special values of the Ramanujan tau zeta function. Our formulas show that L(@D,k) is a period in the sense of Kontsevich and Zagier when k>=12. As an illustration, we reduce L(@D,k) to explicit integrals of hypergeometric and algebraic functions when k@?{12,13,14,15}.

References

[1]
Beilinson, A., Higher regulators of modular curves. In: Contemp. Math., vol. 55. Amer. Math. Soc., Providence. pp. 1-34.
[2]
Berndt, B.C., Ramanujan's Notebooks, Part III. 1991. Springer-Verlag, New York.
[3]
Borwein, J.M., Borwein, D., Glasser, M.L. and Wan, J., Moments of Ramanujan's generalized elliptic integrals and extensions of Catalan's constant. J. Math. Anal. Appl. v384. 478-496.
[4]
Boyd, D.W., Mahler's measure and special values of L-functions. Experiment. Math. v7. 37-82.
[5]
D. Boyd, Mahler's measure and special values of L-functions of elliptic curves at s=3, preprint, 2006.
[6]
Deninger, C., Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions. J. Amer. Math. Soc. v10. 259-281.
[7]
Deninger, C. and Scholl, A., The Beilinson conjectures. In: Coates, J., Taylor, M.J. (Eds.), London Math. Soc. Lecture Notes, vol. 153. Cambridge Univ. Press, Cambridge. pp. 173-209.
[8]
Kontsevich, M. and Zagier, D., Periods. In: Mathematics Unlimited - 2001 and Beyond, Springer, Berlin. pp. 771-808.
[9]
Mordell, L.J., On Mr. Ramanujan's empirical expansions of modular functions. Proc. Cambridge Philos. Soc. v19. 117-124.
[10]
Ramanujan, S., On certain arithmetical functions. Trans. Cambridge Philos. Soc. v2. 159-184.
[11]
Rodriguez-Villegas, F., Modular Mahler measures I. In: Math. Appl., vol. 467. Kluwer Acad. Publ., Dordrecht. pp. 17-48.
[12]
Rodriguez-Villegas, F., Toledano, R. and Vaaler, J.D., Estimates for Mahler's measure of a linear form. Proc. Edinb. Math. Soc. v47. 473-494.
[13]
Rogers, M. and Zudilin, W., From L-series of elliptic curves to Mahler measures. Compos. Math. v148. 385-414.
[14]
Rogers, M. and Zudilin, W., On the Mahler measure of 1+X+1/X+Y+1/Y. Int. Math. Res. Not. IMRN.
[15]
Schoeneberg, B., Elliptic Modular Functions: An Introduction. 1974. Springer-Verlag, New York.
[16]
Wan, J.G., Moments of products of elliptic integrals. Adv. in Appl. Math. v48. 121-141.
[17]
Zagier, D., Introduction to modular forms. In: Waldschmidt, M. (Ed.), From Number Theory to Physics, Springer-Verlag, Heidelberg. pp. 238-291.
[18]
Y. Zhou, Legendre Functions, Spherical Rotations, and Multiple Elliptic Integrals, preprint, 2013.
[19]
Zudilin, W., Period(d)ness of L-values. In: Borwein, J.M. (Ed.), Springer Proc. Math. Stat., vol. 43. Springer. pp. 381-395.
[20]
W. Zudilin, Hypergeometric evaluations of L-values of an elliptic curve, A plenary talk, in: Ramanujan-125 Conference "The Legacy of Srinivasa Ramanujan", University of Delhi, New Delhi, India, December 17-22, 2012.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Advances in Applied Mathematics
Advances in Applied Mathematics  Volume 51, Issue 2
July, 2013
170 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 July 2013

Author Tags

  1. τ Dirichlet series
  2. L-values
  3. Ramanujan zeta function
  4. primary
  5. secondary

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media