Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient

Published: 01 February 2016 Publication History

Abstract

A principal step in designing dividing hydraulic structures entails determining the side weir discharge coefficient. In this study, Firefly optimization-based Support Vector Regression (SVR-FF) is introduced and examined in terms of predicting the discharge coefficient of a modified labyrinth side weir. Ten non-dimensional parameters of various geometrical and hydraulic conditions are defined as the input parameters for the SVR-FF and the side weir discharge coefficient is defined as the output. Improvements in SVR prediction accuracy are determined by comparing SVR-FF with the traditional SVR model. The results indicate that the SVR-FF model with RMSE of 0.035 is about 10% more accurate than SVR with RMSE of 0.039. Thus, combining the Firefly optimization algorithm with SVR increases the prediction model performance.

References

[1]
G. De Marchi, Saggio di teoria del funzionamento degli stramazzi laterali, L'Energia elettrica, 11 (1934) 849-860.
[2]
R. Singh, D. Manivannan, T. Satyanarayana, Discharge coefficients of rectangular side weirs, J. Irrig. Drain. Eng., 120 (1994) 814-819.
[3]
P.K. Swamee, S.K. Pathak, M.S. Ali, Side weir analysis using elementary discharge coefficient, J. Irrig. Drain. Eng., 120 (1994) 742-755.
[4]
H. Agaccioglu, Y. Yuksel, Side weir flow in curved channels, J. Irrig. Drain. Eng., 124 (1998) 163-175.
[5]
S. Borghei, M. Jalili, M. Ghodsian, Discharge coefficient for sharp-crested side weir in subcritical flow, J. Hydraul. Eng., 125 (1999) 1051-1056.
[6]
Y. Muslu, Numerical analysis of lateral weir flow, J. Irrig. Drain. Eng., 127 (2001) 246-253.
[7]
M. Ghodsian, Supercritical flow over a rectangular side weir, Can. J. Civ. Eng., 30 (2003) 596-600.
[8]
E. Yüksel, Effect of specific energy variation on lateral overflows, Flow Meas. Instrum., 15 (2004) 259-269.
[9]
A. Ramamurthy, J. Qu, D. Vo, Nonlinear PLS method for side weir flows, J. Irrig. Drain Eng., 132 (2006) 486-489.
[10]
D.S. Lee, C.W. Kim, Evaluation of discharge coefficients for sharp crested side weir in wide channel, J. Korean Soc. Civil Eng., 28 (2008) 449-458.
[11]
G. Novak, D. Kozelj, F. Steinman, T. Bajcar, Study of flow at side weir in narrow flume using visualization techniques, Flow Meas. Instrum., 29 (2013) 45-51.
[12]
M.E. Emiroglu, N. Kaya, H. Agaccioglu, Discharge capacity of labyrinth side weir located on a straight channel, J. Irrig. Drain. Eng., 136 (2010) 37-46.
[13]
M.C. Aydin, M.E. Emiroglu, Determination of capacity of labyrinth side weir by CFD, Flow Meas. Instrum., 29 (2013) 1-8.
[14]
M. Mirnaseri, A. Emadi, Hydraulic performance of combined flow rectangular labyrinth weir-gate, Middle East. J. Sci. Res., 18 (2013) 1335-1342.
[15]
C. Bautista-Capetillo, O. Robles, H. Júnez-Ferreira, E. Playán, Discharge coefficient analysis for triangular sharp-crested weirs using low-speed photographic technique, J. Irrig. Drain. Eng., 140 (2014).
[16]
M. Emin Emiroglu, M. Cihan Aydin, N. Kaya, Discharge characteristics of a trapezoidal labyrinth side weir with one and two cycles in subcritical flow, J. Irrig. Drain. Eng., 140 (2014).
[17]
O. Bilhan, M. Emin Emiroglu, O. Kisi, Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel, Adv. Eng. Softw., 41 (2010) 831-837.
[18]
M.E. Emiroglu, O. Bilhan, O. Kisi, Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel, Expert. Syst. Appl., 38 (2011) 867-874.
[19]
O. Kisi, M. Emin Emiroglu, O. Bilhan, A. Guven, Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches, Expert. Syst. Appl., 39 (2012) 3454-3460.
[20]
F. Onen, Prediction of Scour at a Side-Weir with GEP, ANN and Regression Models, Arab. J. Sci. Eng., 39 (2014) 6031-6041.
[21]
O.F. Dursun, N. Kaya, M. Firat, Estimating discharge coefficient of semi-elliptical side weir using ANFIS, J. Hydrol., 426-427 (2012) 55-62.
[22]
A.H. Zaji, H. Bonakdari, Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs, Flow Meas. Instrum., 40 (2014) 149-156.
[23]
H. Bonakdari, A.H. Zaji, S. Shamshirband, R. Hashim, D. Petkovic, Sensitivity analysis of the discharge coefficient of a modified triangular side weir by adaptive neuro-fuzzy methodology, Measurement, 73 (2015) 74-81.
[24]
M.E. Emiroglu, O. Kisi, O. Bilhan, Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique, Adv. Eng. Softw., 41 (2010) 154-160.
[25]
T. Asefa, M. Kemblowski, M. McKee, A. Khalil, Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318 (2006) 7-16.
[26]
H.Md. Azamathulla, F.C. Wu, Support vector machine approach for longitudinal dispersion coefficients in natural streams, Appl. Soft Comput., 11 (2011) 2902-2905.
[27]
M. Pal, A. Goel, Prediction of the end-depth ratio and discharge in semi-circular and circular shaped channels using support vector machines, Flow Meas. Instrum., 17 (2006) 49-57.
[28]
A. Parsaie, H.A. Yonesi, S. Najafian, Predictive modeling of discharge in compound open channel by support vector machine technique, Model. Earth Syst. Environ., 1 (2015) 1-6.
[29]
A. Kazem, E. Sharifi, F.K. Hussain, M. Saberi, O.K. Hussain, Support vector regression with chaos-based firefly algorithm for stock market price forecasting, Appl. Soft Comput. J., 13 (2013) 947-958.
[30]
T. Xiong, Y. Bao, Z. Hu, Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting, Knowl. Based. Syst., 55 (2014) 87-100.
[31]
S.M. Borghei, A. Parvaneh, Discharge characteristics of a modified oblique side weir in subcritical flow, Flow Meas. Instrum., 22 (2011) 370-376.
[32]
V. Vapnik, S.E. Golowich, A. Smola, Support vector method for function approximation, regression estimation, and signal processing, in: 10th Annual Conference on Neural Information Processing Systems, NIPS 1996, Neural information processing systems foundation, 1997, pp. 281-287.
[33]
V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, USA, 2000.
[34]
C. Huang, L.S. Davis, J.R.G. Townshend, An assessment of support vector machines for land cover classification, Int. J. Remote Sens., 23 (2002) 725-749.
[35]
A.H. Sung, S. Mukkamala, Identifying important features for intrusion detection using support vector machines and neural networks, in: Proceedings of International Symposium on Applications and the Internet, 2003, pp. 209-216.
[36]
S. Rajasekaran, S. Gayathri, T.L. Lee, Support vector regression methodology for storm surge predictions, Ocean. Eng., 35 (2008) 1578-1587.
[37]
H. Yang, K. Huang, I. King, M.R. Lyu, Localized support vector regression for time series prediction, Neurocomputing, 72 (2009) 2659-2669.
[38]
S. Shamshirband, D. Petkovic, H. Javidnia, A. Gani, Sensor data fusion by support vector regression methodology; a comparative study, Sens. J., IEEE. (2014).
[39]
X.-S. Yang, Firefly algorithms for multimodal optimization, Springer, 2009.
[40]
H. Basser, H. Karami, S. Shamshirband, A. Jahangirzadeh, S. Akib, H. Saboohi, Predicting optimum parameters of a protective spur dike using soft computing methodologies - A comparative study, Comput. Fluids., 97 (2014) 168-176.
[41]
A. Jahangirzadeh, S. Shamshirband, S. Aghabozorgi, S. Akib, H. Basser, N.B. Anuar, M.L.M. Kiah, A cooperative expert based support vector regression (Co-ESVR) system to determine collar dimensions around bridge pier, Neurocomputing, 140 (2014) 172-184.
[42]
S.K. Pal, C.S. Rai, A.P. Singh, Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems, Int. J. Intell. Syst. Appl., 4 (2012) 50-57.
[43]
I. Fister Jr, X.S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm, Evol. Comput., 13 (2013) 34-46.

Cited By

View all
  • (2024)Metaheuristic learning algorithms for accurate prediction of hydraulic performance of porous embankment weirsApplied Soft Computing10.1016/j.asoc.2023.111150151:COnline publication date: 17-Apr-2024
  • (2023)Hydraulic informed multi-layer perceptron for estimating discharge coefficient of labyrinth weirEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106435123:PCOnline publication date: 1-Aug-2023
  • (2022)Stacking ensemble-based hybrid algorithms for discharge computation in sharp-crested labyrinth weirsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07073-026:22(12271-12290)Online publication date: 1-Nov-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Mathematics and Computation
Applied Mathematics and Computation  Volume 274, Issue C
February 2016
800 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 February 2016

Author Tags

  1. Discharge coefficient
  2. Firefly optimization algorithm
  3. Modified labyrinth side weir
  4. Neural network
  5. Support vector regression

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Metaheuristic learning algorithms for accurate prediction of hydraulic performance of porous embankment weirsApplied Soft Computing10.1016/j.asoc.2023.111150151:COnline publication date: 17-Apr-2024
  • (2023)Hydraulic informed multi-layer perceptron for estimating discharge coefficient of labyrinth weirEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106435123:PCOnline publication date: 1-Aug-2023
  • (2022)Stacking ensemble-based hybrid algorithms for discharge computation in sharp-crested labyrinth weirsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07073-026:22(12271-12290)Online publication date: 1-Nov-2022
  • (2022)A Walnut optimization algorithm applied to discharge coefficient prediction on labyrinth weirsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07041-826:22(12197-12215)Online publication date: 1-Nov-2022

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media