Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Technical Section: Surface-based flow visualization

Published: 01 December 2012 Publication History

Abstract

With increasing computing power, it is possible to process more complex fluid simulations. However, a gap between increasing data size and our ability to visualize them still remains. Despite the great amount of progress that has been made in the field of flow visualization over the last two decades, a number of challenges remain. While the visualization of 2D flow has many good solutions, the visualization of 3D flow still poses many problems. Challenges such as domain coverage, speed of computation, and perception remain key directions for further research. Flow visualization with a focus on surface-based techniques forms the basis of this literature survey, including surface construction techniques and visualization methods applied to surfaces. We detail our investigation into these algorithms with discussions of their applicability and their relative strengths and drawbacks. We review the most important challenges when considering such visualizations. The result is an up-to-date overview of the current state-of-the-art that highlights both solved and unsolved problems in this rapidly evolving branch of research.

References

[1]
Ansys UK. Fluent engineering simulation. {http://www.fluent.co.uk/}; 2010 {accessed 08.08.12}.
[2]
Abraham, R.H. and Shaw, C.D., Dynamics-the geometry of behavior. 1992. Addison-Wesley.
[3]
Belie RG. Some advances in digital flow visualization. In: AIAA aerospace sciences conference, Reno, NV, AIAA; January 1987. p. 87-1179.
[4]
Buerger, K., Ferstl, F., Theisel, H. and Westermann, R., Interactive streak surface visualization on the GPU. IEEE Trans Visual Comput Graphics. v15 i6. 1259-1266.
[5]
Bridson RE. Computational aspects of dynamic surfaces. PhD thesis, Stanford, CA, USA; 2003.
[6]
Bachthaler S, Sadlo F, Dachsbacher C, Weiskopf D. Space-time visualization of dynamics in Lagrangian coherent structures of time-dependent 2D vector fields. In: International conference on information visualization theory and applications; 2012. p. 573-83.
[7]
Battke H, Stalling D, Hege H. Fast line integral convolution for arbitrary surfaces in 3D. In: Visualization and mathematics. Springer-Verlag; 1997. p. 181-95.
[8]
Bachthaler S, Strengert M, Weiskopf D, Ertl T. Parallel texture-based vector field visualization on curved surfaces using GPU cluster computers. In: Eurographics symposium on parallel graphics and visualization (EGPGV06). Eurographics Association, Universitat Stuttgart; 2006. p. 75-82
[9]
Bachthaler, S. and Weiskopf, D., Animation of orthogonal texture patterns for vector field visualization. IEEE Trans Visual Comput Graphics. v14 iJuly (4). 741-755.
[10]
Born, S., Wiebel, A., Friedrich, J., Scheuermann, G. and Bartz, D., Illustrative stream surfaces. IEEE Trans Visual Comput Graphics. v16 i6. 1329-1338.
[11]
Cabral B, Leedom LC. Imaging vector fields using line integral convolution. In: Proceedings of ACM SIGGRAPH 1993, Annual conference series; 1993. p. 263-72.
[12]
Darmofal D, Haimes R. Visualization of 3-D vector fields: variations on a stream. Paper 92-0074, AIAA; 1992.
[13]
de Leeuw W, van Wijk JJ. Enhanced spot noise for vector field visualization. In: Proceedings IEEE visualization '95. IEEE Computer Society; October 1995. p. 233-9.
[14]
Edmunds M, Laramee RS, Chen G, Zhang E, Max N. Advanced, automatic stream surface seeding and filtering. Theory and practice of computer graphics (TPCG 2012); 2012, p. 53-60, ISBN: 978-3-905673-93-7.
[15]
Edmunds M, Laramee RS, Malki R, Masters I, Croft TN, Chen G, et al. Automatic stream surface seeding: a feature centered approach. Comput. Graphics Forum, 31, 1095-1104. 10.1111/j.1467-8659.2012.03102.x.
[16]
Edmunds M, McLoughlin T, Laramee RS, Chen G, Zhang E, Max N. Automatic stream surfaces seeding. In: EUROGRAPHICS 2011 short papers, Llandudno, Wales, UK; April 11-15, 2011. p. 53-6.
[17]
Ferstl, F., Burger, K., Theisel, H. and Westermann, R., Interactive separating streak surfaces. IEEE Trans Visual Comput Graphics. v16 iNovember-December (6). 1569-1577.
[18]
Forssell, L.K. and Cohen, S.D., Using line integral convolution for flow visualization: curvilinear grids, variable-speed animation, and unsteady flows. . IEEE Trans Visual Comput Graphics. v1 iJune (2). 133-141.
[19]
Forsberg, A.S., Chen, J. and Laidlaw, D.H., Comparing 3D vector field visualization methods: a user study. . IEEE Trans Visual Comput Graphics. v15 i6. 1219-1226.
[20]
Forssell LK. Visualizing flow over curvilinear grid surfaces using line integral convolution. In: Proceedings IEEE visualization '94. IEEE Computer Society; October 1994. p. 240-7.
[21]
Gelder, A.V., Stream surface generation for fluid flow solutions on curvilinear grids. In: Ebert, D., Favre, J.M., Peikert, R. (Eds.), Proceedings of the joint eurographics-IEEE TCVG symposium on visualizatation (VisSym-01) (May 28-30 2001), Springer-Verlag. pp. 95-106.
[22]
Garth, C., Krishnan, H., Tricoche, X., Tricoche, T. and Joy, K.I., Generation of accurate integral surfaces in time-dependent vector fields. IEEE Trans Visual Comput Graphics. v14 i6. 1404-1411.
[23]
GOV: Met Office. {http://www.metoffice.gov.uk/}, 2010 {accessed 08.08.10}.
[24]
Garth, C., Tricoche, X., Salzbrunn, T., Bobach, T. and Scheuermann, G., Surface techniques for vortex visualization. In: Deussen, O., Hansen, C., Keim, D., Saupe, D. (Eds.), Joint eurographics-IEEE TCVG symposium on visualization, Eurographics Association. pp. 155-164.
[25]
Haller, G., Distinguished material surfaces and coherent structures in three dimensional fluid flows. Physica D. v149. 248-277.
[26]
Hummel, M., Garth, C., Hamann, B., Hagen, H. and Joy, K., IRIS: Illustrative rendering for integral surfaces. IEEE Trans Visual Comput Graphics. v16 i6. 1319-1328.
[27]
Hultquist JPM. Constructing stream surfaces in steady 3D vector fields. In: Proceedings IEEE visualization '92; 1992. p. 171-8.
[28]
IEEE VisWeek: 2008 IEEE visualization design contest. {http://viscontest.sdsc.edu/2008/}; 2010 {accessed 08.08.10}.
[29]
Jobard B, Erlebacher G, Hussaini MY. Lagrangian-Eulerian advection for unsteady flow visualization. In: Proceedings IEEE visualization '01. IEEE Computer Society; October 2001. p. 53-60.
[30]
Jobard B, Lefer W. Creating evenly-spaced streamlines of arbitrary density. In: Proceedings of the eurographics workshop on visualization in scientific computing '97, vol. 7; 1997. p. 45-55.
[31]
Kerlic DG. Moving iconic objects in scientific visualization '91. In: Proceedings of visualization; October 1990. p. 124-9.
[32]
Krishnan, H., Garth, C. and Joy, K., Time and streak surfaces for flow visualization in large time-varying data sets. IEEE Trans Visual Comput Graphics. v15 i6. 1267-1274.
[33]
Laramee, R.S., FIRST: a flexible and interactive resampling tool for CFD simulation data. Comput Graphics. v27 i6. 905-916.
[34]
Liu, Z., Cai, S., Swan II, J.E., Moorhead II, R.J., Martin, J.P. and Jankun-Kelly, T.J., A 2D flow visualization user study using explicit flow synthesis and implicit task design. IEEE Trans Visual Comput Graphics. v18 i5. 783-796.
[35]
Laramee, R.S., Erlebacher, G., Garth, C., Theisel, H., Tricoche, X., Weinkauf, T. and Weiskopf, D., Applications of texture-based flow visualization. Eng Appl Comput Fluid Mech. v2 i3. 264-274.
[36]
Laramee RS, Garth C, Doleisch H, Schneider J, Hauser H, Hagen H. Visual analysis and exploration of fluid flow in a cooling jacket. In: Proceedings IEEE visualization 2005; 2005. p. 623-30.
[37]
Laramee RS, Garth C, Schneider J, Hauser H. Texture-advection on stream surfaces: a novel hybrid visualization applied to CFD results. In: Data visualization, the joint eurographics-IEEE VGTC symposium on visualization (EuroVis 2006). Eurographics Association; 2006. p. 155-62, 368.
[38]
The state of the art in flow visualization: dense and texture-based techniques. Comput Graphics Forum. v23 i2. 203-221.
[39]
Laramee R, Jobard B, Hauser H. Image space based visualization of unsteady flow on surfaces. In: Proceedings IEEE visualization '03. IEEE Computer Society; 2003, p. 131-8.
[40]
Laidlaw, D., Kirby, R., Jackson, C., Davidson, J., Miller, T. and da Silva, M., Comparing 2D vector field visualization methods: a user study. IEEE Trans Visual Comput Graphics. v11 i1. 59-70.
[41]
Loffelmann H, Mroz L, Groller E. Hierarchical streamarrows for the visualization of dynamical systems. Technical Report, Institute of Computer Graphics, Vienna University of Technology; 1997.
[42]
Loffelmann, H., Mroz, L., Groller, E. and Purgathofer, W., Stream arrows: enhancing the use of streamsurfaces for the visualization of dynamical systems. Vis Comput. v13. 359-369.
[43]
Laramee RS, Schneider J, Hauser H. Texture-based flow visualization on isosurfaces from computational fluid dynamics. In: Data visualization. the joint eurographics-IEEE TVCG symposium on visualization (VisSym '04). Eurographics Association; 2004. p. 85-90, 342.
[44]
Li, G.-S., Tricoche, X., Weiskopf, D. and Hansen, C.D., Flow charts: visualization of vector fields on arbitrary surfaces. IEEE Trans Visual Comput Graphics. v14 i5. 1067-1080.
[45]
Laramee, R., van Wijk, J.J., Jobard, B. and Hauser, H., ISA and IBFVS: image space based visualization of flow on surfaces. . IEEE Trans Visual Comput Graphics. v10 i6. 637-648.
[46]
Laramee R, Weiskopf D, Schneider J, Hauser H. Investigating swirl and tumble flow with a comparison of visualization techniques. In: Proceedings IEEE visualization 2004; 2004. p. 51-8.
[47]
Mase, G.T., Continuum mechanics for engineers. 1999. CRC Press.
[48]
Mao X, Kikukawa M, Fujita N, Imamiya A. Line integral convolution for 3D surfaces. In: Visualization in scientific computing '97. Proceedings of the eurographics workshop; 1997, Eurographics. p. 57-70.
[49]
McLoughlin T, Laramee RS, Zhang E. Easy integral surfaces: a fast, quad-based stream and path surface algorithm. In: Proceedings of computer graphics international (CGI '09). Computer Graphics Society, Springer; May 2009. p. 67-76.
[50]
McLoughlin T, Laramee RS, Zhang E. Constructing streak surfaces in 3D unsteady vector fields. In: Hauser H, editor. Proceedings Spring conference on computer graphics; December 2010. p. 25-32.
[51]
Ma K-L, Smith PJ. Cloud tracing in convection-diffusion systems. In: Proceedings of the fourth conference on visualization '93 (VIS '93), Washington, DC, USA. IEEE Computer Society; 1993. p. 253-60.
[52]
Palmerius KL, Cooper M, Ynnerman A. Flow field visualization using vector field perpendicular surfaces. In: Spring conference on computer graphics; 2009.
[53]
Peachey, D.R., Solid texturing of complex surfaces. Comput Graphics (Proceedings of ACM SIGGRAPH 85). v19 i3. 279-286.
[54]
Peng Z, Grundy E, Laramee RS, Chen G, Croft N. Mesh-driven vector field clustering and visualization: an image-based approach. IEEE Trans Visual Comput Graphics 2012;18(2):283-98
[55]
Peng Z, Laramee RS. Vector glyphs for surfaces: a fast and simple glyph placement algorithm for adaptive resolution meshes. In: Proceedings of vision, modeling, and visualization (VMV) 2008; 2008. p. 61-70.
[56]
Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A. and Theisel, H., On the way towards topology-based visualization of unsteady flow the state of the art. EuroGraphics 2010 state of the art reports. 137-154.
[57]
Peikert R, Roth M. The parallel vectors operator-a vector field visualization primitive. In: Proceedings of IEEE visualization '99. IEEE Computer Society; 1999. p. 263-70.
[58]
Peikert R, Sadlo F. Topologically relevant stream surfaces for flow visualization. In: Hauser H, editor, Proceedings of the Spring conference on computer graphics; April 2009. p. 43-50.
[59]
Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S. and Doleisch, H., The state of the art in flow visualization: feature extraction and tracking. Comput Graphics Forum. v22 i4. 775-792.
[60]
Pagendarm H-G, Walter B. Feature detection from vector quantities in a numerically simulated hypersonic flow field in combination with experimental flow visualization. In: Proceedings of the conference on visualization '94 (VIS '94). IEEE Computer Society Press; 1994. p. 117-23.
[61]
Palacios, J. and Zhang, E., Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans Visual Comput Graphics.
[62]
Roth M, Peikert R. Flow visualization for turbomachinery design. In: Proceedings IEEE visualization '96; October 1996. p. 381-4.
[63]
Rosanwo O, Petz C, Hotz I, Prohaska S, Hege H-C. Dual streamline seeding. In: Proceedings of IEEE Pacific visualization symposium '09; 2009.
[64]
Scheuermann G, Bobach T, Hagen H, Mahrous K, Hamann B, Joy KI, et al. A tetrahedral-based stream surface algorithm. In: Proceedings IEEE visualization '01; October 2001. p. 151-7.
[65]
Shen H-W, Johnson CR, Ma K-L. Visualizing vector fields using line integral convolution and dye advection. In: 1996 Volume visualization symposium. IEEE; October 1996. p. 63-70.
[66]
A new line integral convolution algorithm for visualizing time-varying flow fields. IEEE Trans Visual Comput Graphics. v4 i2. 98-108.
[67]
Spencer, B., Laramee, R.S., Chen, G. and Zhang, E., Evenly-spaced streamlines for surfaces: an image-based approach. Comput Graphics Forum. v28 i6. 1618-1631.
[68]
Sadlo, F. and Peikert, R., Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans Visual Comput Graphics. v13 i6. 1456-1463.
[69]
Schneider D, Reich W, Wiebel A, Scheuermann G. Topology aware stream surfaces. In: Eurographics/IEEE symposium on visualization, Bordeaux, France, vol. 29; June 9-11, 2010. p. 1153-61.
[70]
Schafhitzel T, Tejada E, Weiskopf D, Ertl T. Point-based stream surfaces and path surfaces. In: Proceedings of graphics interface 2007 (GI '07), ACM; 2007. p. 289-96.
[71]
Schroeder W, Volpe CR, Lorensen WE. The stream polygon: a technique for 3D vector field visualization. In: Proceedings IEEE visualization '91; 1991. p. 126-32.
[72]
Schneider, D., Wiebel, A. and Scheuermann, G., Smooth stream surfaces of fourth order precision. Comput Graphics Forum. v28 i3.
[73]
Tannoy: Tannoy. {http://www.tannoy.com/}; 2010 {accessed 29.09.10}.
[74]
Theisel H, Seidel H-P, Feature flow fields. In: Proceedings of the joint eurographics-IEEE TCVG symposium on visualization (VisSym 03); 2003. p. 141-8.
[75]
Theisel H, Shaner J, Weinkauf T, Hege H-C, Seidel H-P. Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking. In: Proceedings IEEE visualization 2005; 2005. p. 631-8.
[76]
Theisel H, Weinkauf T, Hege H-C, Seidel H-P. Saddle connectors-an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings IEEE visualization '03; 2003. p. 225-32.
[77]
Ueng, S.K., Sikorski, C. and Ma, K.L., Efficient streamline cc streamribbon cc and streamtube constructions on unstructured grids. IEEE Trans Visual Comput Graphics. v2 i2. 100-110.
[78]
von Funck, W., Weinkauf, T., Theisel, H. and Seidel, H.-P., Smoke surfaces: an interactive flow visualization technique inspired by real-world flow experiments. IEEE Trans Visual Comput Graphics (Proceedings IEEE Visualization). v14 i6. 1396-1403.
[79]
van Wijk, J.J., Spot noise-texture synthesis for data visualization. In: Sederberg, T.W. (Ed.), Computer Graphics (Proceedings of ACM SIGGRAPH 91), vol. 25. pp. 309-318.
[80]
van Wijk JJ. Implicit stream surfaces. In: Proceedings of the visualization '93 conference. IEEE Computer Society; October 1993. p. 245-52.
[81]
van Wijk, J.J., Image based flow visualization. ACM Trans Graphics. v21 i3. 745-754.
[82]
van Wijk JJ. Image based flow visualization for curved surfaces. In: Proceedings IEEE visualization '03. IEEE Computer Society; 2003. p. 123-30.
[83]
Weiskopf D, Ertl T. A hybrid physical/device-space approach for spatio-temporally coherent interactive texture advection on curved surfaces. In: Proceedings of graphics interface; 2004. p. 263-70.
[84]
Weiskopf, D., Iterative twofold line integral convolution for texture-based vector field visualization. 2009. Springer.
[85]
Weiskopf D, Hauser H. Cycle shading for the assessment and visualization of shape in one and two codimensions. In: Proceedings of graphics interface 2006 (GI '06). Canadian Information Processing Society; Toronto, ON, Canada, 2006. p. 219-26.
[86]
Westermann R, Johnson C, Ertl T. A level-set method for flow visualization. In: Proceedings of the conference on Visualization '00 (VIS '00). IEEE Computer Society Press; 2000. p. 147-54.
[87]
Weinkauf T, Theisel H, Hege HC, Seidel H-P. Boundary switch connectors for topological visualization of complex 3D vector fields. In: Proceedings of the joint eurographics-IEEE TCVG symposium on visualization (VisSym 04); 2004. p. 183-92.
[88]
Yan S, Max N, Ma KL. Polygonal surface advection applied to strange attractors. In: Pacific graphics 2010, vol. 29; 2010.
[89]
Zwicker, M., Pauly, M., Knoll, O. and Gross, M., Pointshop 3D: an interactive system for point-based surface editing. ACM Trans Graphics. v21 i3. 322-329.
[90]
Camarri S, Salvetti M-V, Buffoni M, Iollo A. Simulation of the three-dimensional flow around a squarecylinder between parallel walls at moderate (Reynolds) numbers. XVII Congresso di Meccanica Teorica ed Applicata; 2005
[91]
International CFD Database. {http://cfd.cineca.it/}
[92]
von Funck, W., Weinkauf, T., Theisel, H. and Seidel, H-P, smoke surfaces: an interactive flow visualization technique inspired by real-world flow experiments. IEEE Transa. Visualization Comput. Graphics (Proceedings Visualization 2008). v14 i6. 1396-1403.

Cited By

View all
  • (2024)A Comparative Study Between a Large Screen and an HMD Using Wind Representations in Virtual RealityIEEE Computer Graphics and Applications10.1109/MCG.2024.342694344:4(53-68)Online publication date: 19-Jul-2024
  • (2022)StreamFlow: a visual analysis system for 2D streamlines based on workflow mining techniqueJournal of Visualization10.1007/s12650-021-00795-725:2(307-323)Online publication date: 1-Apr-2022
  • (2018)A survey of parallel particle tracing algorithms in flow visualizationJournal of Visualization10.1007/s12650-017-0470-221:3(351-368)Online publication date: 1-Jun-2018
  • Show More Cited By
  1. Technical Section: Surface-based flow visualization

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Computers and Graphics
    Computers and Graphics  Volume 36, Issue 8
    December, 2012
    244 pages

    Publisher

    Pergamon Press, Inc.

    United States

    Publication History

    Published: 01 December 2012

    Author Tags

    1. Flow visualization
    2. Surfaces
    3. Survey

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A Comparative Study Between a Large Screen and an HMD Using Wind Representations in Virtual RealityIEEE Computer Graphics and Applications10.1109/MCG.2024.342694344:4(53-68)Online publication date: 19-Jul-2024
    • (2022)StreamFlow: a visual analysis system for 2D streamlines based on workflow mining techniqueJournal of Visualization10.1007/s12650-021-00795-725:2(307-323)Online publication date: 1-Apr-2022
    • (2018)A survey of parallel particle tracing algorithms in flow visualizationJournal of Visualization10.1007/s12650-017-0470-221:3(351-368)Online publication date: 1-Jun-2018
    • (2018)UIAJournal of Visualization10.1007/s12650-017-0448-021:2(267-280)Online publication date: 1-Apr-2018
    • (2018)Geometrical characteristic-based stream surface of 3D flow fieldJournal of Visualization10.1007/s12650-017-0447-121:2(281-294)Online publication date: 1-Apr-2018
    • (2017)A stream ribbon seeding strategyProceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers10.2312/eurovisshort.20171135(67-71)Online publication date: 12-Jun-2017
    • (2017)Survey of Surveys SoS - Mapping The Landscape of Survey Papers in Information VisualizationComputer Graphics Forum10.1111/cgf.1321236:3(589-617)Online publication date: 1-Jun-2017
    • (2017)Decoupled Opacity Optimization for Points, Lines and SurfacesComputer Graphics Forum10.1111/cgf.1311536:2(153-162)Online publication date: 1-May-2017
    • (2016)Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical FlowIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2015.246729122:1(995-1004)Online publication date: 31-Jan-2016
    • (2016)Batch advection for the piecewise linear vector field on simplicial gridsComputers and Graphics10.1016/j.cag.2015.07.01654:C(75-83)Online publication date: 1-Feb-2016
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media