Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Identification of imidazole-based small molecules to combat cognitive disability caused by Alzheimer’s disease: : A molecular docking and MD simulations based approach

Published: 21 November 2024 Publication History

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is the primary cause of dementia. It is characterised by the gradual loss of brain cells, which results in memory loss and cognitive dysfunction. One of the hallmarks of AD is an abnormally upregulated glutaminyl-peptide cyclotransferase (QPCT or QC) enzyme. Not only AD, but QC has also been implicated with pathological conditions like Huntington's disease (HD), melanomas, carcinomas, atherosclerosis, and septic arthritis. Therefore, the inhibition of QC emerged as a potential strategy for preventing multiple pathological conditions. Considering this, we screened a library of 153,536 imidazole-based compounds against a doubly mutant (Y115E-Y117E) QC target. Molecular docking based virtual screening and absorption, distribution, metabolism, excretion/toxicity (ADME/T) predictions identified five compounds, namely 118981836, 136459842, 139388116, 139388226, and 139958725. Furthermore, molecular dynamics (MD) simulations of 500 ns were conducted to investigate the behaviour of the identified compounds with the target receptor. The results were compared to the co-ligand by analysing RMSD, RMSF, and SASA parameters. To our knowledge, this is the first computational study that employed a protein with double mutation to identify new imidazole-based QC-inhibitors.

Graphical Abstract

Display Omitted

Highlights

In-silico studies on imidazole-based anti-ADs agents.
Five promising compounds were identified.
MD simulation studies to investigate the interactions at supramolecular level.

References

[1]
P. Banerjee, F.O. Dehnbostel, R. Preissner, Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets, Front. Chem. 6 (2018).
[2]
P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res 46 (W1) (2018) W257–W263.
[3]
M. Buchholz, U. Heiser, S. Schilling, A.J. Niestroj, K. Zunkel, H.-U. Demuth, The first potent inhibitors for human glutaminyl cyclase: synthesis and structure− activity relationship, J. Med Chem. 49 (2) (2006) 664–677.
[4]
J.R. Coimbra, P.I. Moreira, A.E. Santos, J.A. Salvador, Therapeutic potential of glutaminyl cyclases: current status and emerging trends, Drug Discov. Today (2023).
[5]
J.R. Coimbra, P.J. Sobral, A.E. Santos, P.I. Moreira, J.A. Salvador, An overview of glutaminyl cyclase inhibitors for Alzheimer’s disease, Future Med. Chem. 11 (24) (2019) 3179–3194.
[6]
W.L. DeLano, Pymol: An open-source molecular graphics tool, CCP4 Newsl. Protein Crystallogr 40 (1) (2002) 82–92.
[7]
K. Dileep, N. Sakai, K. Ihara, M. Kato-Murayama, A. Nakata, A. Ito, D. Sivaraman, J.W. Shin, M. Yoshida, M. Shirouzu, Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors, Int. J. Biol. Macromol. 170 (2021) 415–423.
[8]
F. DiPisa, C. Pozzi, M. Benvenuti, M. Andreini, G. Marconi, S. Mangani, The soluble Y115E–Y117E variant of human glutaminyl cyclase is a valid target for X-ray and NMR screening of inhibitors against Alzheimer disease, Acta Crystallogr. Sect. F Struct. Biol. Commun. 71 (8) (2015) 986–992.
[9]
M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig, R. Preissner, ProTox: a web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Res. 42 (W1) (2014) W53–W58.
[10]
R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, Glide: a new approach for rapid, accurate docking and scoring. 1, Method Assess. docking Accuracy J. Med. Chem. 47 (7) (2004) 1739–1749.
[11]
S. Gatfaoui, N. Issaoui, A. Mezni, F. Bardak, T. Roisnel, A. Atac, H. Marouani, Synthesis, structural and spectroscopic features, and investigation of bioactive nature of a novel organic-inorganic hybrid material 1H-1, 2, 4-triazole-4-ium trioxonitrate, J. Mol. Struct. 1150 (2017) 242–257.
[12]
N. Guex, M.C. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling, electrophoresis 18 (15) (1997) 2714–2723.
[13]
A.P. Gunn, B.X. Wong, C. McLean, C. Fowler, P.J. Barnard, J.A. Duce, B.R. Roberts, A.R. Group, Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals, J. Neurochem. 156 (6) (2021) 979–987.
[14]
F. Hammami, N. Issaoui, S. Nasr, Investigation of hydrogen bonded structure of urea-water mixtures through Infra-red spectroscopy and non-covalent interaction (NCI) theoretical approach, Comput. Theor. Chem. 1199 (2021).
[15]
K.-F. Huang, Y.-L. Liu, W.-J. Cheng, T.-P. Ko, A.H.-J. Wang, Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation, Proc. Natl. Acad. Sci. 102 (37) (2005) 13117–13122.
[16]
S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, PubChem substance and compound databases, Nucleic Acids Res. 44 (D1) (2016) D1202–D1213.
[17]
K. Küçükoğlu, Y.G. AÇIL, Glutaminyl cyclase and its inhibitors, Int. J. Innov. Res. Rev. 6 (1) (2022) 59–75.
[18]
Ye Liu, Y. Shi, P. Wang, Functions of glutaminyl cyclase and its isoform in diseases, Vis. Cancer Med. 4 (2023) 1.
[19]
P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A 105 (43) (2001) 9954–9960.
[20]
G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101 (5) (1994) 4177–4189.
[21]
M. Medimagh, C.B. Mleh, N. Issaoui, A.S. Kazachenko, T. Roisnel, O.M. Al-Dossary, H. Marouani, L.G. Bousiakoug, DFT and molecular docking study of the effect of a green solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1, 4-diium bis (hydrogenoxalate) compound, J. Mol. Liq. 369 (2023).
[22]
N. Mhadhbi, N. Issaoui, W.S. Hamadou, J.M. Alam, A.S. Elhadi, M. Adnan, H. Naϊli, R. Badraoui, Physico-chemical properties, pharmacokinetics, molecular docking and in-vitro pharmacological study of a cobalt (II) complex based on 2-aminopyridine, ChemistrySelect 7 (3) (2022).
[23]
T. Morishita, From Nosé–Hoover chain to Nosé–Hoover network: design of non-Hamiltonian equations of motion for molecular-dynamics with multiple thermostats, Mol. Phys. 108 (10) (2010) 1337–1347.
[24]
E. Nichols, C.E. Szoeke, S.E. Vollset, N. Abbasi, F. Abd-Allah, J. Abdela, M.T.E. Aichour, R.O. Akinyemi, F. Alahdab, S.W. Asgedom, Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurol. 18 (1) (2019) 88–106.
[25]
T. Qassem, L. Itani, W. Nasr, D. Al-Ayyat, S.F. Javaid, H. Al-Sinawi, Prevalence and economic burden of dementia in the Arab world, BJPsych Open 9 (4) (2023).
[26]
C. Qiu, M. Kivipelto, E. Von Strauss, Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention, Dialog. Clin. Neurosci. 11 (2) (2009) 111–128.
[27]
M.P. Repasky, M. Shelley, R.A. Friesner, Flexible ligand docking with Glide, Curr. Protoc. Bioinforma. 18 (1) (2007) 8.12. 11-18.12. 36.
[28]
D. Romani, O. Noureddine, N. Issaoui, S.A. Brandán, Properties and reactivities of niclosamide in different media, a potential antiviral to treatment of COVID-19 by using DFT calculations and molecular docking, Biointerface Res. Appl. Chem. 10 (6) (2020) 7295–7328.
[29]
S. Schilling, A.J. Niestroj, J.-U. Rahfeld, T. Hoffmann, M. Wermann, K. Zunkel, C. Wasternack, H.-U. Demuth, Identification of human glutaminyl cyclase as a metalloenzyme: potent inhibition by imidazole derivatives and heterocyclic chelators, J. Biol. Chem. 278 (50) (2003) 49773–49779.
[30]
D. Shivakumar, E. Harder, W. Damm, R.A. Friesner, W. Sherman, Improving the prediction of absolute solvation free energies using the next generation OPLS force field, J. Chem. Theory Comput. 8 (8) (2012) 2553–2558.
[31]
G. Sliwoski, S. Kothiwale, J. Meiler, E.W. Lowe, Computational methods in drug discovery, Pharmacol. Rev. 66 (1) (2014) 334–395.
[32]
S.F. Sousa, P.A. Fernandes, M.J. Ramos, Protein–ligand docking: current status and future challenges, Protein.: Struct., Funct., Bioinforma. 65 (1) (2006) 15–26.
[33]
T. Sterling, J.J. Irwin, ZINC 15–ligand discovery for everyone, J. Chem. Inf. Model. 55 (11) (2015) 2324–2337.
[34]
UniProt: the universal protein knowledgebase (2017). Nucleic acids research 45 (D1):D158-D169.
[35]
D.K. Vijayan, K.Y. Zhang, Human glutaminyl cyclase: structure, function, inhibitors and involvement in Alzheimer’s disease, Pharmacol. Res. 147 (2019).
[36]
X. Wang, L. Wang, X. Yu, Y. Li, Z. Liu, Y. Zou, Y. Zheng, Z. He, H. Wu, Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice, Int. Immunopharmacol. 75 (2019).
[37]
A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res. 46 (W1) (2018) W296–W303.
[38]
C. Xu, Y.-n Wang, H. Wu, Glutaminyl cyclase, diseases, and development of glutaminyl cyclase inhibitors, J. Med. Chem. 64 (10) (2021) 6549–6565.
[39]
P.V. Zadorozhnii, V.V. Kiselev, A.V. Kharchenko, In silico ADME profiling of salubrinal and its analogues, Future Pharmacol. 2 (2) (2022) 160–197.
[40]
Q. Zhou, J. Cai, F. Qin, J. Liu, C. Li, W. Xiong, Y. Wang, C. Xu, H. Wu, Discovery of potential scaffolds for glutaminyl cyclase inhibitors: Virtual screening, synthesis, and evaluation, Biorg Med. Chem. 97 (2024).

Index Terms

  1. Identification of imidazole-based small molecules to combat cognitive disability caused by Alzheimer’s disease: A molecular docking and MD simulations based approach
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Computational Biology and Chemistry
    Computational Biology and Chemistry  Volume 112, Issue C
    Oct 2024
    820 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 21 November 2024

    Author Tags

    1. Glutaminyl-peptide cyclotransferase
    2. Imidazole derivatives
    3. Alzheimer's disease
    4. MD simulations

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media