Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Pushdown timed automata: a binary reachability characterization and safety verification

Published: 13 June 2003 Publication History

Abstract

We consider pushdown timed automata (PTAs) that are timed automata (with dense clocks) augmented with a pushdown stack. A configuration of a PTA includes a state, dense clock values and a stack word. By using the pattern technique, we give a decidable characterization of the binary reachability (i.e., the set of all pairs of configurations such that one can reach the other) of a PTA. Since a timed automaton can be treated as a PTA without the pushdown stack, we can show that the binary reachability of a timed automaton is definable in the additive theory of reals and integers. The results can be used to verify a class of properties containing linear relations over both dense variables and unbounded discrete variables. The properties previously could not be verified using the classic region technique nor expressed by timed temporal logics for timed automata and CTL* for pushdown systems. The results are also extended to other generalizations of timed automata.

References

[1]
{1} R. Alur, Timed automata, CAV'99, Lecture Notes in Computer Science, Vol. 1633, Springer, Berlin, 1999, pp. 8-22.]]
[2]
{2} R. Alur, C. Courcoibetis, D. Dill, Model-checking in dense real time, Inform. Comput. 104 (1993) 2-34.]]
[3]
{3} R. Alur, D. Dill, A theory of timed automata, Theoret. Comput. Sci. 126 (1994) 183-236.]]
[4]
{4} R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, J. ACM 43 (1996) 116-146.]]
[5]
{5} R. Alur, T.A. Henzinger, Real-time logics: complexity and expressiveness, Inform. Comput. 104 (1993) 35-77.]]
[6]
{6} R. Alur, T.A. Henzinger, A really temporal logic, J. ACM 41 (1994) 181-204.]]
[7]
{7} T. Ball, S.K. Rajamani, Bebop: a symbolic model-checker for Boolean programs, Spin Workshop'00, Lecture Notes in Computer Science, Vol. 1885, Springer, Berlin, 2000, pp. 113-130.]]
[8]
{8} J.R. Buchi, On a decision method in restricted second order arithmetic, Proc. Internat. Congress on Logic, Method, and Philosophy of Sciences. Stanford University Press, Stanford, CA, 1962, pp. 1-12.]]
[9]
{9} B. Boigelot, S. Rassart, P. Wolper, On the expressiveness of real and integer arithmetic automata, ICALP'98, Lecture Notes in Computer Science, Vol. 1443, Springer, Berlin, 1998, pp. 152-163.]]
[10]
{10} A. Bouajjani, R. Echahed, R. Robbana, On the automatic verification of systems with continuous variables and unbounded discrete data structures, in: P.J. Antsaklis, W. Kohn, A. Nerode, S. Sastry (Eds.), Hybrid System II, Lecture Notes in Computer Science, Vol. 999, Springer, Berlin, 1995, pp. 64-85.]]
[11]
{11} A. Bouajjani, J. Esparza, O. Maler, Reachability Analysis of Pushdown Automata: Application to Model-Checking, CONCUR'97, Lecture Notes in Computer Science, Vol. 1243, Springer, Berlin. 1997, pp. 135-150.]]
[12]
{12} M. Bozga, C. Daws, O. Maler, A. Olivero S. Tripakis, S. Yovine, Kronos: A model-checking tool for real-time systems, CAV'98, Lecture Notes in Computer Science, Vol. 1427, Springer, Berlin, 1998, pp. 546-550.]]
[13]
{13} A. Cherubini, L. Breveglieri, C. Citrini, S. Crespi Reghizzi, Multi-push-down languages and grammars, Internat. J. Foundations Comput. Sci. 7 (3) (1996) 253-291.]]
[14]
{14} A. Coen-Porisini, C. Ghezzi, R. Kemmerer, Specification of real-time systems using ASTRAL, IEEE Trans. Software Eng. 23 (1997) 572-598.]]
[15]
{15} H. Comon, V. Cortier, Flatness is not a weakness, CSL'00, Lecture Notes in Computer Science, Vol. 1862, Springer, Berlin, 2000, pp. 262-276.]]
[16]
{16} H. Comon, Y. Jurski, Multiple counters automata, safety analysis and Presburger arithmetic, CAV'98, Lecture Notes in Computer Science, Vol. 1427, Springer, Berlin, 1998, pp. 268-279.]]
[17]
{17} H. Comon, Y. Jurski, Timed automata and the theory of real numbers, CONCUR'99, Lecture Notes in Computer Science, Vol. 1664, Springer, Berlin, 1999, pp. 242-257.]]
[18]
{18} Z. Dang, Debugging and verification of infinite state real-time systems, Ph.D. Dissertation, University of California, Santa Barbara, August 2000.]]
[19]
{19} Z. Dang, Binary reachability analysis of pushdown timed automata with dense clocks, CAV'01, Lecture Notes in Computer Science, Vol. 2102, Springer, Berlin, 2001, pp. 506-517.]]
[20]
{20} Z. Dang, O.H. Ibarra, T. Bultan, R.A. Kemmerer, J. Su, Binary reachability analysis of discrete pushdown timed automata, CAV'00, Lecture Notes in Computer Science, Vol 1855, Springer, Berlin, 2000, pp. 69-84.]]
[21]
{21} Z. Dang, O.H. Ibarra, R.A. Kemmerer, Decidable approximations on generalized and parameterized discrete timed automata, COCOON'01, Lecture Notes in Computer Science, Vol. 2108, Springer, Berlin, 2001, pp. 529-539.]]
[22]
{22} Z. Dang, P. San Pietro, R.A. Kemmerer, On Presburger liveness of discrete timed automata, STACS'01, Lecture Notes in Computer Science, Vol. 2010, Springer, Berlin, 2001, pp. 132-143.]]
[23]
{23} J. Esparza, S. Schwoon, A BDD-based model-checker for recursive programs, CAV'01, Lecture Notes in Computer Science, Vol. 2102, Springer, Berlin, 2001, pp. 324-336.]]
[24]
{24} A. Finkel, B. Willems, P. Wolper, A direct symbolic approach to model checking pushdown systems, Electronic Notes in Theoretical Computer Science, Vol. 9, Elsevier, Amsterdam, 2000.]]
[25]
{25} E. Gurari, O. Ibarra, The complexity of decision problems for finite-turn multicounter machines, J. Comput. System Sci. 22 (1981) 220-229.]]
[26]
{26} T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for real-time systems, Inform. Comput. 111 (1994) 193-244.]]
[27]
{27} T.A. Henzinger, Pei-Hsin Ho, HyTech: the Cornell hybrid technology tool, in: P.J. Antsaklis, W. Kohn, A. Nerode, S. Sastry (Eds.), Hybrid Systems II, Lecture Notes in Computer Science, Vol. 999, Springer, Berlin, 1995, pp. 265-294.]]
[28]
{28} O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1978) 116-133.]]
[29]
{29} O.H. Ibarra, T. Jiang, N. Tran, H. Wang, New decidability results concerning two-way counter machines, SIAM J. Comput. 24 (1995) 123-137.]]
[30]
{30} F. Laroussinie, K.G. Larsen, C. Weise, From timed automata to logic--and back, MFCS'95, Lecture Notes in Computer Science, Vol. 969, Springer, Berlin, 1995, pp. 529-539.]]
[31]
{31} K.G. Larsen, G. Behrmann, Ed Brinksma, A. Fehnker, T. Hune, P. Pettersson, J. Romijn, As cheap as possible: efficient cost-optimal reachability for priced timed automata, CAV'01, Lecture Notes in Computer Science, Vol. 2102, Springer, Berlin, 2001, pp. 493-505.]]
[32]
{32} K.G. Larsen, P. Pattersson, W. Yi, UPPAAL in a nutshell, Internat. J. Software Tools Technol. Transfer 1 (1997) 134-152.]]
[33]
{33} M.L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, 1967.]]
[34]
{34} J. Raskin, P. Schobben, State clock logic: a decidable real-time logic, HART'97, Lecture Notes in Computer Science, Vol. 1201, Springer, Berlin, 1997, pp. 33-47.]]
[35]
{35} T. Wilke, Specifying timed state sequences in powerful decidable logics and timed automata, Lecture Notes in Computer Science, Vol. 863, Springer, Berlin, 1994, pp. 694-715.]]
[36]
{36} S. Yovine, Model checking timed automata, in: G. Rozenberg, F.W. Vaandrager (Eds.), Embedded Systems'98, Lecture Notes in Computer Science, Vol. 1494, Springer, Berlin, 1998, pp. 114-152.]]

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 302, Issue 1-3
13 June 2003
489 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 13 June 2003

Author Tags

  1. binary reachability
  2. model-checking
  3. presburger
  4. pushdown timed automata
  5. real-time systems
  6. timed automata

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Ramsey Quantifiers in Linear ArithmeticsProceedings of the ACM on Programming Languages10.1145/36328438:POPL(1-32)Online publication date: 5-Jan-2024
  • (2021)Fast Zone-Based Algorithms for Reachability in Pushdown Timed AutomataComputer Aided Verification10.1007/978-3-030-81685-8_30(619-642)Online publication date: 20-Jul-2021
  • (2020)Model Checking MITL Formulae on Timed AutomataACM Transactions on Computational Logic10.1145/338368721:3(1-44)Online publication date: 17-Apr-2020
  • (2020)Computing Linear Arithmetic Representation of Reachability Relation of One-Counter AutomataDependable Software Engineering. Theories, Tools, and Applications10.1007/978-3-030-62822-2_6(89-107)Online publication date: 24-Nov-2020
  • (2017)Revisiting reachability in timed automataProceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science10.5555/3329995.3330033(1-12)Online publication date: 20-Jun-2017
  • (2017)Information rate of some classes of non-regular languagesInformation and Computation10.1016/j.ic.2017.04.008256:C(45-61)Online publication date: 1-Oct-2017
  • (2016)Timed recursive state machinesTheoretical Computer Science10.1016/j.tcs.2016.02.021625:C(85-124)Online publication date: 25-Apr-2016
  • (2016)Quantifying communication in synchronized languagesTheoretical Computer Science10.1016/j.tcs.2016.01.042654:C(33-44)Online publication date: 22-Nov-2016
  • (2016)Execution information rate for some classes of automataInformation and Computation10.1016/j.ic.2015.11.006246:C(20-29)Online publication date: 1-Feb-2016
  • (2015)Sampling automata and programsTheoretical Computer Science10.1016/j.tcs.2015.03.012577:C(125-140)Online publication date: 27-Apr-2015
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media