Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-28604-9_44guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The 5w structure for sentiment summarization-visualization-tracking

Published: 11 March 2012 Publication History

Abstract

In this paper we address the Sentiment Analysis problem from the end user's perspective. An end user might desire an automated at-a-glance presentation of the main points made in a single review or how opinion changes time to time over multiple documents. To meet the requirement we propose a relatively generic opinion 5Ws structurization, further used for textual and visual summary and tracking. The 5W task seeks to extract the semantic constituents in a natural language sentence by distilling it into the answers to the 5W questions: Who, What, When, Where and Why. The visualization system facilitates users to generate sentiment tracking with textual summary and sentiment polarity wise graph based on any dimension or combination of dimensions as they want i.e. "Who" are the actors and "What" are their sentiment regarding any topic, changes in sentiment during "When" and "Where" and the reasons for change in sentiment as "Why".

References

[1]
Dasgupta, S., Ng, V.: Topic-wise, Sentiment wise, or Otherwise? Identifying the Hidden Dimension for Unsupervised Text Classification. In: EMNLP 2009 (2009)
[2]
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval (2008)
[3]
Seki, Y., Eguchi, K., Kando, N.: Analysis of multi-document viewpoint summarization using multi-dimensional genres, pp. 142-145. AAAI (2004)
[4]
Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In: Proceedings of ACL (2004)
[5]
Ku, L.-W., Li, L.-Y., Wu, T.-H., Chen, H.-H.: Major topic detection and its application to opinion summarization. In: Proceedings of the SIGIR, pp. 627-628 (2005)
[6]
Liang, Z., Eduard, H.: On the summarization of dynamically introduced information: Online discussions and blogs. In: AAAI-CAAW, pp. 237-242 (2006)
[7]
Kawai, Y., Kumamoto, T., Tanaka, K.: Fair News Reader: Recommending News Articles with Different Sentiments Based on User Preference. In: Apolloni, B., Howlett, R. J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 612-622. Springer, Heidelberg (2007)
[8]
Hu, M., Liu, B.: Mining and summarizing-customer reviews. In: Proc. of the 10th ACMSIGKDD Conf., pp. 168-177. ACM Press, New York (2004)
[9]
Zhuang, L., Jing, F., Zhu, X., Zhang, L.: Movie review mining and summarization. In: ACM-SIGIR-(CIKM) (2006)
[10]
Das, S. R., Chen, M.Y.: Yahoo! for Amazon: Sentiment extraction from small talk on the Web. Management Science 53(9), 1375-1388 (2007)
[11]
Gamon, M., Aue, A., Corston-Oliver, S., Ringger, E.: Pulse: Mining Customer Opinions from Free Text. In: Famili, A. F., Kok, J. N., Peña, J. M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 121-132. Springer, Heidelberg (2005)
[12]
Yi, J., Niblack, W.: Sentiment mining in WebFountain. In: Proceedings of the International Conference on Data Engineering, ICDE (2005)
[13]
Gruhl, D., Chavet, L., Gibson, D., Meyer, J., Pattanayak, P., Tomkins, A., Zien, J.: How to build a Webfountain: architecture for very large-scale text analytics. IBM Systems Journal 43(1), 64-77 (2004)
[14]
Carenini, G., Ng, R. T., Pauls, A.: Interactive multimedia summaries of evaluative text. In: Proceedings of Intelligent User Interfaces (IUI), pp. 124-131. ACM Press (2006)
[15]
Gregory, M. L., Chinchor, N., Whitney, P., Carter, R., Hetzler, E., Turner, A.: Userdirected sentiment analysis: Visualizing the affective content of documents. In: Proceedings of the Workshop on Sentiment and Subjectivity in Text, pp. 23-30. ACL (2006)
[16]
Lloyd, L., Kechagias, D., Skiena, S. S.: Lydia: A System for Large-Scale News Analysis. In: Consens, M. P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 161-166. Springer, Heidelberg (2005)
[17]
Ku, L.-W., Liang, Y.-T., Chen, H.-H.: Opinion extraction, summarization and tracking in news and blog corpora. In: AAAI-CAAW, pp. 100-107 (2006)
[18]
Mishne, G., de Rijke, M.: Moodviews: Tools for blog mood analysis. In: AAAI-CAAW, pp. 153-154 (2006)
[19]
Fukuhara, T., Nakagawa, H., Nishida, T.: Understanding sentiment of people from news articles: Temporal sentiment analysis of social events. In: ICWSM (2007)
[20]
Parton, K., McKeown, K., Coyne, B., Diab, M., Grishman, R., Hakkani-Tür, D., Harper, M., Ji, H., Wei, Y. M., Meyers, A., Stolbach, S., Sun, A., Tur, G., Wei, X., Sibel, Y.: Who, What, When, Where, Why? Comparing Multiple Approaches to the Cross-Lingual 5W Task. In: The Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pp. 423-431 (2009)
[21]
Das, A., Ghosh, A., Bandyopadhyay, S.: Semantic Role Labeling for Bengali Noun using 5Ws: Who, What, When, Where and Why. In: The Proceeding of the International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLPKE2010), Beijing, China, pp. 1-8 (2010)
[22]
Ekbal, A., Bandyopadhyay, S.: A Web-based Bengali News Corpus for Named Entity Recognition. LRE Journal 42(2), 173-182 (2008)
[23]
Tang, Y.-J., Chen, H.-H.: Emotion Modeling from Writer/Reader Perspectives Using a Microblog Dataset. In: Proceeding of the Workshop Sentiment Analysis Where AI Meets Psychology (2011)
[24]
Haghighi, A., Toutanova, K., Manning, C. D.: A Joint Model for Semantic Role Labeling. In: CoNLL-2005 Shared Task (2005)
[25]
Gildea, D., Jurafsky, D.: Automatic Labeling of Semantic Roles. In: Association for Computational Linguistics (2002)
[26]
Palmer, M., Gildea, D., Kingsbury, P.: The Proposition Bank: A Corpus Annotated with Semantic Roles. Computational Linguistics Journal 31(1) (2005)
[27]
Ghosh, A., Das, A., Bhaskar, P., Bandyopadhyay, S.: Dependency Parser for Bengali: the JU System at ICON 2009. In: NLP Tool Contest ICON 2009 (2009)
[28]
Das, A., Bandyopadhyay, S.: Subjectivity Detection using Genetic Algorithm. In: WASSA 2010, Lisbon, Portugal, August 16-20 (2010)
[29]
Das, A., Bandyopadhyay, S.: Phrase-level Polarity Identification for Bengali. IJCLA 1(1-2), 169-182 (2010) ISSN 0976-0962s
[30]
Page, L.: PageRank: Bringing Order to the Web. Stanford Digital Library Project (1997)
[31]
Fruchterman Thomas, M. J., Reingold Edward, M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129-1164 (1991)
[32]
Marc, S., Shneiderman, B., Milic-Frayling, N., Rodrigues, E. M., Barash, V., Dunne, C., Capone, T., Perer, A., Gleave, E.: Analyzing (social media) networks with NodeXL. In: C&T 2009: Proc. Fourth International Conference on Communities and Technologies (2009)

Cited By

View all
  • (2012)Exploiting 5W annotations for opinion trackingProceedings of the fifth workshop on Exploiting semantic annotations in information retrieval10.1145/2390148.2390151(3-4)Online publication date: 2-Nov-2012

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
CICLing'12: Proceedings of the 13th international conference on Computational Linguistics and Intelligent Text Processing - Volume Part I
March 2012
614 pages
ISBN:9783642286032
  • Editor:
  • Alexander Gelbukh

Sponsors

  • Springer
  • National Polytechnic Institute, Mexico: National Polytechnic Institute, Mexico
  • The Association for Computational Linguistics
  • Natural Language and Text Processing Lab., CIC-IPN: Natural Language and Text Processing Laboratory, CIC-IPN
  • Indian Institute of Technology, Delhi: Indian Institute of Technology, Delhi

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 11 March 2012

Author Tags

  1. 5W sentiment structurization
  2. sentiment summarization
  3. sentiment tracking
  4. sentiment visualization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2012)Exploiting 5W annotations for opinion trackingProceedings of the fifth workshop on Exploiting semantic annotations in information retrieval10.1145/2390148.2390151(3-4)Online publication date: 2-Nov-2012

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media