Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-642-23783-6_28guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Link prediction via matrix factorization

Published: 05 September 2011 Publication History

Abstract

We propose to solve the link prediction problem in graphs using a supervised matrix factorization approach. The model learns latent features from the topological structure of a (possibly directed) graph, and is shown to make better predictions than popular unsupervised scores. We show how these latent features may be combined with optional explicit features for nodes or edges, which yields better performance than using either type of feature exclusively. Finally, we propose a novel approach to address the class imbalance problem which is common in link prediction by directly optimizing for a ranking loss. Our model is optimized with stochastic gradient descent and scales to large graphs. Results on several datasets show the efficacy of our approach.

References

[1]
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3), 211-230 (2003)
[2]
Agarwal, D., Chen, B.-C.: Regression-based latent factor models. In: KDD 2009, pp. 19-28. ACM, New York (2009)
[3]
Airoldi, E., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. In: NIPS, pp. 33-40 (2008)
[4]
Batagelj, V., Ferligoj, A., Doreian, P.: Generalized blockmodeling. Informatica (Slovenia) 23(4) (1999)
[5]
Beck, N., King, G., Zeng, L.: Improving quantitative studies of international conflict: A conjecture. American Political Science Review 94(1), 21-36 (2000)
[6]
Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6, 1-6 (2004)
[7]
Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In: Joint Conference on Digital Libraries, vol. 7, pp. 141-142 (2005)
[8]
Chu, W., Park, S.-T.: Personalized recommendation on dynamic content using predictive bilinear models. In: WWW 2009, pp. 691-700. ACM, New York (2009)
[9]
Doppa, J.R., Yu, J., Tadepalli, P., Getoor, L.: Learning algorithms for link prediction based on chance constraints. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 344-360. Springer, Heidelberg (2010)
[10]
Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from Data (in Press, 2011)
[11]
Ruben Gabriel, K.: Generalized bilinear regression. Biometrika 85, 689-700 (1998)
[12]
Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.: Learning attribute-to-feature mappings for cold-start recommendations. In: ICDM, pp. 176-185 (2010)
[13]
Ghosn, F., Palmer, G., Bremer, S.: The MID3 data set, 1993-2001: Procedures, coding rules, and description. Conflict Management and Peace Science 21, 133-154 (2004)
[14]
Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM Workshop on Link Analysis, Counterterrorism and Security (2006)
[15]
Hoff, P.: Modeling homophily and stochastic equivalence in symmetric relational data. In: NIPS (2007)
[16]
Hoff, P.D.: Bilinear mixed effects models for dyadic data. Journal of the American Statistical Association 32, 100-286 (2003)
[17]
Hofmann, T., Puzicha, J., Jordan, M.I.: Learning from dyadic data. In: NIPS II, pp. 466-472. MIT Press, Cambridge (1999)
[18]
Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002, pp. 133-142. ACM, New York (2002)
[19]
Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., Tsuda, K.: Link propagation: A fast semi-supervised learning algorithm for link prediction. In: SDM, pp. 1099-1110 (2009)
[20]
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30-37 (2009)
[21]
Lichtenwalter, R., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: KDD, pp. 243-252 (2010)
[22]
Lu, L., Zhou, T.: Link prediction in complex networks: A survey (2010), http://arxiv.org/abs/1010.0725
[23]
Menon, A.K., Elkan, C.: A log-linear model with latent features for dyadic prediction. In: ICDM (2010)
[24]
Miller, K., Griffiths, T., Jordan, M.: Nonparametric latent feature models for link prediction. In: NIPS, vol. 22, pp. 1276-1284 (2009)
[25]
Mørup, M., Schmidt, M.N., Hansen, L.K.: Infinite multiple membership relational modeling for complex networks. In: NIPS Workshop on Networks Across Disciplines in Theory and Application (2010)
[26]
Raymond, R., Kashima, H.: Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 131-147. Springer, Heidelberg (2010)
[27]
Rendle, S., Freudenthaler, C., Gantner, Z., Lars, S.-T.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI 2009, pp. 452-461. AUAI Press, Arlington (2009)
[28]
Roweis, S.: NIPS dataset (2002), http://www.cs.nyu.edu/~roweis/data.html
[29]
Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: SIGIR 2002, pp. 253-260. ACM, New York (2002)
[30]
Sculley, D.: Large scale learning to rank. In: NIPS Workshop on Advances in Ranking (2009)
[31]
Tsuda, K., Noble, W.S.: Learning kernels from biological networks by maximizing entropy. Bioinformatics 20, 326-333 (2004)
[32]
Vert, J.-P., Jacob, L.: Machine learning for in silico virtual screening and chemical genomics: New strategies. Combinatorial Chemistry & High Throughput Screening 11(8), 677-685 (2008)
[33]
Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: ICDM, pp. 322-331 (2007)
[34]
Ward, M.D., Siverson, R.M., Cao, X.: Disputes, democracies, and dependencies: A reexamination of the Kantian peace. American Journal of Political Science 51(3), 583-601 (2007)
[35]
Watts, D.J., Strogatz, S.H.: Collective dynamics of "small-world" networks. Nature 393(6684), 440-442 (1998)
[36]
Yamanishi, Y., Vert, J.-P., Kanehisa, M.: Supervised enzyme network inference from the integration of genomic data and chemical information. In: ISMB (Supplement of Bioinformatics), pp. 468-477 (2005)
[37]
Yang, S.H., Long, B., Smola, A., Sadagopan, N., Zheng, Z., Zha, H.: Like like alike - joint friendship and interest propagation in social networks. In: WWW (2011)
[38]
Zhu, S., Yu, K., Chi, Y., Gong, Y.: Combining content and link for classification using matrix factorization. In: SIGIR 2007, pp. 487-494. ACM, New York (2007)
[39]
Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical report, CMU (2002)

Cited By

View all
  • (2024)Asymmetric Learning for Graph Neural Network based Link PredictionACM Transactions on Knowledge Discovery from Data10.1145/364034718:5(1-18)Online publication date: 10-Jan-2024
  • (2023)Evaluating graph neural networks for link predictionProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666291(3853-3866)Online publication date: 10-Dec-2023
  • (2023)Joint Inference of Diffusion and Structure in Partially Observed Social Networks Using Coupled Matrix FactorizationACM Transactions on Knowledge Discovery from Data10.1145/359923717:9(1-28)Online publication date: 18-Jul-2023
  • Show More Cited By
  1. Link prediction via matrix factorization

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    ECMLPKDD'11: Proceedings of the 2011th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part II
    September 2011
    676 pages
    ISBN:9783642237829
    • Editors:
    • Dimitrios Gunopulos,
    • Thomas Hofmann,
    • Donato Malerba,
    • Michalis Vazirgiannis

    Sponsors

    • Pascal2 Network: Pascal2 Network
    • Xerox
    • Google Inc.
    • COST/MOVE: COST/MOVE
    • Yahoo! Labs

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 05 September 2011

    Author Tags

    1. link prediction
    2. matrix factorization
    3. ranking loss
    4. side information

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Asymmetric Learning for Graph Neural Network based Link PredictionACM Transactions on Knowledge Discovery from Data10.1145/364034718:5(1-18)Online publication date: 10-Jan-2024
    • (2023)Evaluating graph neural networks for link predictionProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666291(3853-3866)Online publication date: 10-Dec-2023
    • (2023)Joint Inference of Diffusion and Structure in Partially Observed Social Networks Using Coupled Matrix FactorizationACM Transactions on Knowledge Discovery from Data10.1145/359923717:9(1-28)Online publication date: 18-Jul-2023
    • (2023)Modeling Within-Basket Auxiliary Item Recommendation with Matchability and UbiquityACM Transactions on Intelligent Systems and Technology10.1145/357415714:3(1-19)Online publication date: 13-Apr-2023
    • (2023)Co-Membership-based Generic Anomalous Communities DetectionNeural Processing Letters10.1007/s11063-022-11103-155:5(5619-5651)Online publication date: 5-Jan-2023
    • (2023)A link prediction method based on compressed sensing for social networksApplied Intelligence10.1007/s10489-023-05060-y53:23(29300-29318)Online publication date: 1-Dec-2023
    • (2023)Towards Few-Shot Inductive Link Prediction on Knowledge Graphs: A Relational Anonymous Walk-Guided Neural Process ApproachMachine Learning and Knowledge Discovery in Databases: Research Track10.1007/978-3-031-43418-1_31(515-532)Online publication date: 18-Sep-2023
    • (2022)A Generative Bayesian Model for Item and User Recommendation in Social Rating Networks with Trust RelationshipsMachine Learning and Knowledge Discovery in Databases10.1007/978-3-662-44848-9_17(258-273)Online publication date: 10-Mar-2022
    • (2022)Scalable Nonnegative Matrix Factorization with Block-wise UpdatesMachine Learning and Knowledge Discovery in Databases10.1007/978-3-662-44845-8_22(337-352)Online publication date: 10-Mar-2022
    • (2021)Synonymy Expansion Using Link Prediction Methods: A Case Study of Assamese WordNetACM Transactions on Asian and Low-Resource Language Information Processing10.1145/346796621:1(1-21)Online publication date: 2-Nov-2021
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media