Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-319-39570-8_10guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Branching Bisimulation Games

Published: 06 June 2016 Publication History

Abstract

Branching bisimilarity and branching bisimilarity with explicit divergences are typically used in process algebras with silent steps when relating implementations to specifications. When an implementation fails to conform to its specification, i.e., when both are not related by branching bisimilarity [with explicit divergence], pinpointing the root causes can be challenging. In this paper, we provide characterisations of branching bisimilarity [with explicit divergence] as games between $$\textsc {Spoiler}$$SPOILER and $$\textsc {Duplicator}$$DUPLICATOR, offering an operational understanding of both relations. Moreover, we show how such games can be used to assist in diagnosing non-conformance between implementation and specification.

References

[1]
Basten, T.: Branching bisimilarity is an equivalence indeed!. Inform. Process. Lett. 583, 141---147 1996
[2]
Blom, S., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.: mgrCRL: a toolset for analysing algebraic specifications. In: Berry, G., Comon, H., Finkel, A. eds. CAV 2001. LNCS, vol. 2102, pp. 250---254. Springer, Heidelberg 2001
[3]
Bulychev, P.E., Konnov, I.V., Zakharov, V.A.: Computing bisimulation relations preserving CTL*-X for ordinary and fair Kripke structures. Inst. Syst. Program. Russ. Acad. Sci. Math. Meth. Algorithm 12, 59---76 2007
[4]
Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. eds. TACAS 2013 ETAPS 2013. LNCS, vol. 7795, pp. 199---213. Springer, Heidelberg 2013
[5]
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 152, 89---107 2013
[6]
Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time logic model checking. Inform. Comput. 1502, 132---152 1999
[7]
Grädel, E., Thomas, W., Wilke, T. eds.: Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg 2002
[8]
Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching and stuttering equivalence. In: Paterson, M.S. ed. Automata, Languages and Programming. LNCS, vol. 443, pp. 626---638. Springer, Heidelberg 1990
[9]
Groote, J.F., Wijs, A.: An Om log n algorithm for stuttering equivalence and branching bisimulation. In: Chechik, M., Raskin, J.-F. eds. TACAS 2016. LNCS, vol. 9636, pp. 607---624. Springer, Heidelberg 2016.
[10]
Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de Bakker, J., van Leeuwen, J. eds. Automata, Languages and Programming. LNCS, vol. 85, pp. 299---309. Springer, Heidelberg 1980
[11]
Korver, H.: Computing distinguishing formulas for branching bisimulation. In: Larsen, K.G., Skou, A. eds. CAV 1991. LNCS, vol. 575, pp. 13---23. Springer, Heidelberg 1992
[12]
Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh, S., Sivakumar, G. eds. FST TCS 1997. LNCS, vol. 1346, pp. 284---296. Springer, Heidelberg 1997
[13]
Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. ed. Theoretical Computer Science. LNCS, vol. 104, pp. 167---183. Springer, Heidelberg 1981
[14]
Reniers, M.A., Schoren, R., Willemse, T.A.C.: Results on embeddings between state-based and event-based systems. Comput. J. 571, 73---92 2014
[15]
Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. ed. TACAS 1998. LNCS, vol. 1384, pp. 85---101. Springer, Heidelberg 1998
[16]
Stirling, C.: Modal and temporal logics for processes. In: Moller, F., Birtwistle, G. eds. Structure versus Automata. LNCS, vol. 1043, pp. 149---237. Springer, Heidelberg 1996
[17]
Thomas, W.: On the Ehrenfeucht-Fraïssé game in theoretical computer science. In: Gaudel, M.-C., Jouannaud, J.-P. eds. TAPSOFT'93: Theory and Practice of Software Development. LNCS, vol. 668, pp. 559---568. Springer, Heidelberg 1993
[18]
van Glabbeek, R.J., Luttik, S.P., Trçka, N.: Branching bisimilarity with explicit divergence. Fundam. Inform. 934, 371---392 2009
[19]
van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 433, 555---600 1996
[20]
Yin, Q., Fu, Y., He, C., Huang, M., Tao, X.: Branching bisimilarity checking for PRS. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. eds. ICALP 2014, Part II. LNCS, vol. 8573, pp. 363---374. Springer, Heidelberg 2014

Cited By

View all

Index Terms

  1. Branching Bisimulation Games

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    36th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components, and Systems - Volume 9688
    June 2016
    274 pages
    ISBN:9783319395692
    • Editors:
    • Elvira Albert,
    • Ivan Lanese

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 06 June 2016

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media