Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-30823-9_22guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

ParaQooba: A Fast and Flexible Framework for Parallel and Distributed QBF Solving

Published: 22 April 2023 Publication History

Abstract

Over the last years, innovative parallel and distributed SAT solving techniques were presented that could impressively exploit the power of modern hardware and cloud systems. Two approaches were particularly successful: (1) search-space splitting in a Divide-and-Conquer (D &C) manner and (2) portfolio-based solving. The latter executes different solvers or configurations of solvers in parallel. For quantified Boolean formulas (QBFs), the extension of propositional logic with quantifiers, there is surprisingly little recent work in this direction compared to SAT.
In this paper, we present ParaQooba, a novel framework for parallel and distributed QBF solving which combines D &C parallelization and distribution with portfolio-based solving. Our framework is designed in such a way that it can be easily extended and arbitrary sequential QBF solvers can be integrated out of the box, without any programming effort. We show how ParaQooba orchestrates the collaboration of different solvers for joint problem solving by performing an extensive evaluation on benchmarks from QBFEval’22, the most recent QBF competition.

References

[1]
Balyo, T., Lonsing, F.: HordeQBF: A modular and massively parallel QBF solver. In: Creignou, N., Berre, D.L. (eds.) Proc. of the 19th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 9710, pp. 531–538. Springer (2016).
[2]
Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1177–1221. IOS Press (2021).
[3]
Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N.S., Sofronie-Stokkermans, V. (eds.) Proc. of the 23rd Int. Conf. on Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 6803, pp. 101–115. Springer (2011).
[4]
Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate quantified boolean formulae. In: Kautz, H.A., Porter, B.W. (eds.) Proc. of the 17th Nat. Conf. on Artificial Intelligence and 12th Conf. on on Innovative Applications of Artificial Intelligence (AAAI/IAAI). pp. 285–290. AAAI Press / The MIT Press (2000), http://www.aaai.org/Library/AAAI/2000/aaai00-044.php
[5]
Frioux, L.L., Baarir, S., Sopena, J., Kordon, F.: Modular and efficient divide-and-conquer SAT solver on top of the painless framework. In: Vojnar, T., Zhang, L. (eds.) Proc. of the 25th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 11427, pp. 135–151. Springer (2019).
[6]
Heisinger, M.: Distributed SAT & QBF solving: The paracooba framework. Master Thesis, JKU Linz (2021)
[7]
Heisinger, M., Fleury, M., Biere, A.: Distributed cube and conquer with paracooba. In: Pulina, L., Seidl, M. (eds.) Proc. of the 23rd Int. Conf. on Theory and Applications of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 12178, pp. 114–122. Springer (2020).
[8]
Heisinger, M., Seidl, M., Biere, A.: Artifact for Paper ParaQooba: A Fast and Flexible Framework for Parallel and Distributed QBF Solving (Nov 2022).
[9]
Heisinger, M., Seidl, M., Biere, A.: QuAPI: Adding assumptions to non-assuming SAT & QBF solvers. In: Konev, B., Schon, C., Steen, A. (eds.) Proc. of the Workshop on Practical Aspects of Automated Reasoning (FLoC/IJCAR). CEUR Workshop Proceedings, vol. 3201. CEUR-WS.org (2022), http://ceur-ws.org/Vol-3201/paper1.pdf
[10]
Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015).
[11]
Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) Proc. of the 7th Int. Conf. on Hardware and Software: Verification and Testing (HVC). Lecture Notes in Computer Science, vol. 7261, pp. 50–65. Springer (2011).
[12]
Hoos, H.H., Peitl, T., Slivovsky, F., Szeider, S.: Portfolio-based algorithm selection for circuit QBFs. In: Hooker, J.N. (ed.) Proc. of the 24th Int. Conf. on Principles and Practice of Constraint Programming (CP). Lecture Notes in Computer Science, vol. 11008, pp. 195–209. Springer (2018).
[13]
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) Proc. of the 15th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 7317, pp. 114–128. Springer (2012).
[14]
Jordan, C., Kaiser, L., Lonsing, F., Seidl, M.: MPIDepQBF: Towards parallel QBF solving without knowledge sharing. In: Sinz, C., Egly, U. (eds.) Proc. of the 17th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 8561, pp. 430–437. Springer (2014).
[15]
Kaufmann, D., Kauers, M., Biere, A., Cok, D.: Arithmetic verification problems submitted to the SAT Race 2019. In: Heule, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Race 2019 – Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2019-1, p. 49. University of Helsinki (2019)
[16]
Lewis, M., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.: Parallel QBF solving with advanced knowledge sharing. Fundam. Informaticae 107(2-3), 139–166 (2011).
[17]
Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In: de Moura, L. (ed.) Proc. of the 26th Int. Conf. on Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 10395, pp. 371–384. Springer (2017).
[18]
Lonsing, F., Seidl, M.: Parallel solving of quantified boolean formulas. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 101–139. Springer (2018).
[19]
Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 133–182. IOS Press (2021).
[20]
Mayer-Eichberger, V., Saffidine, A.: Positional games and QBF: The corrective encoding. In: Pulina, L., Seidl, M. (eds.) Proc. of the 23rd Int. Conf. on Theory and Applications of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 12178, pp. 447–463. Springer (2020).
[21]
Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16 and QBFEVAL’17). Artif. Intell. 274, 224–248 (2019).
[22]
Pulina, L., Seidl, M., Shukla, A.: QBFEval 2022. http://www.qbflib.org/qbfeval22.php (2022)
[23]
Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Proc. of the Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD). pp. 136–143. IEEE (2015)
[24]
Sanders, P., Schreiber, D.: Mallob: Scalable SAT solving on demand with decentralized job scheduling. J. Open Source Softw. 7(77),  4591 (2022).
[25]
Shaik, I., Mayer-Eichberger, V., van de Pol, J., Saffidine, A.: Implicit state and goals in QBF encodings for positional games (extended version) (2023).
[26]
Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified boolean formulas. In: Proc. of the 31st IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI). pp. 78–84. IEEE (2019).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Tools and Algorithms for the Construction and Analysis of Systems: 29th International Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22–27, 2023, Proceedings, Part I
Apr 2023
717 pages
ISBN:978-3-031-30822-2
DOI:10.1007/978-3-031-30823-9
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 April 2023

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media