Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Simulation-based performance analysis of an ultra-low specific on-resistance trench SOI LDMOS with a floating vertical field plate

Published: 01 March 2017 Publication History

Abstract

An ultra-low specific on-resistance $$(R_\mathrm{{on,sp}})$$(Ron,sp) trench SOI LDMOS with a floating vertical field plate structure (FVFPT SOI) is proposed in this paper. A floating vertical plate (FVFP) is introduced into the filled oxide trench of a conventional trench SOI LDMOS (CT SOI) to improve its electrical performance. We conduct related performance analysis to this device by simulation and investigate the effects of different parameters on its performance. The FVFP causes an assisted depletion effect especially for the trench surface regions. An ultra-low $$R_\mathrm{{on,sp}}$$Ron,sp is therefore obtained in the FVFP device due to higher drift region doping concentration $$(N_\mathrm{{d}})$$(Nd). A breakdown voltage (BV) of 188V and a $$R_\mathrm{{on,sp}}$$Ron,sp of $$0.9 \hbox { m}\Omega \, \hbox { cm}^{2}$$0.9mΩcm2 are realized on a 4.8-$${\upmu }\hbox {m}$$μm-long drift region, a 7.5-$${\upmu }\hbox {m}$$μm-thick top-silicon layer and a 0.5-$${\upmu }\hbox {m}$$μm-thick buried oxide (BOX) layer by our simulation. Eventually, the $$R_\mathrm{{on,sp}}$$Ron,sp for the FVFPT SOI can be reduced by more than 60%, while its BV is maintained the same class as the CT SOI, and the figure of merit (FOM) is enhanced by 155%. And a set of optimal parameters, including the structure parameters of plate and the property parameters of device, are obtained.

References

[1]
Hu, S., Luo, J., Jiang, Y.Y., Cheng, K., Chen, Y., Jin, J., et al.: Improving breakdown, conductive, and thermal performances for SOI high voltage LDMOS using a partial compound buried layer. Solid State Electron. 117, 146---151 (2015)
[2]
Kosina, H., Gritsch, M., Grasser, T., Linton, T., Yu, S., Giles, M.D., et al.: An improved energy transport model suitable for simulation of partially depleted SOI MOSFETs. J. Comput. Electron. 1(3), 371---374 (2002)
[3]
Chen, Y., Hu, S., Cheng, K., Jiang, Y.Y., Luo, J., Wang, J., et al.: A novel low specific on-resistance double-gate LDMOS with multiple buried p-layers in the drift region based on the silicon-on-insulator substrate. Superlattices Microstruct. 89, 59---67 (2015)
[4]
Zhang, Y., Yu, W.U., You, X., Kang, B.: New development of junction termination techniques for power devices. Chin. J. Electron Devices 32(3), 538---546 (2009)
[5]
Orouji, A.A., Rahimifar, A., Jozi, M.: A novel double-gate SOI MOSFET to improve the floating body effect by dual SiGe trench. J. Comput. Electron. 15(2), 537---544 (2016)
[6]
Fan, J., Zhang, B., Luo, X.R., Li, Z.J.: High-voltage SOI lateral MOSFET with a dual vertical field plate. Chin. Phys. B 22(11), 645---650 (2013)
[7]
Wu, L., Zhang, W., Shi, Q., et al.: Trench SOI LDMOS with vertical field plate. Electron. Lett. 50(25), 1982---1984 (2014)
[8]
Li, P.C., Luo, X.R., Luo, Y.C., Zhou, K., Shi, X.L., Zhang, Y.H.: An ultra-low specific on-resistance trench LDMOS with a u-shaped gate and accumulation layer. Chin. Phys. B 24(4), 399---404 (2015)
[9]
Pu, Q., Yun, J., Temkin, H., Liu, S.: Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4(6), 1099---1103 (2004)
[10]
User's Manual, MEDICI: Two-Dimensional Device Simulation Program, TMA MEDICI 4.2, Technology Modeling Associates Inc., Palo Alto (1998)
[11]
Zhang, W., Zhang, B., Qiao, M., Wu, L., Mao, K., Li, Z.: A novel vertical field plate lateral device with ultralow specific on-resistance. IEEE Trans. Electron Devices 61(2), 518---524 (2014)
[12]
Xiong, W., Cleavelin, C.R., Wise, R., Yu, S.: Full/partial depletion effects in FinFETs. Electron. Lett. 41(8), 504---506 (2005)
[13]
Luo, X., Lei, T.F., Wang, Y.G., Yao, G.L., Jiang, Y.H., Zhou, K., et al.: Low on-resistance SOI dual-trench-gate MOSFET. IEEE Trans. Electron Devices 59(2), 504---509 (2012)
[14]
Xia, C., Cheng, X., Wang, Z., Xu, D., Cao, D., Zheng, L., et al.: Improvement of SOI trench LDMOS performance with double vertical metal field plate. IEEE Trans. Electron Devices 61(10), 3477---3482 (2014)
[15]
Luo, X., Fan, J., Wang, Y., Lei, T., Qiao, M., Zhang, B., et al.: Ultralow specific on-resistance high-voltage SOI lateral MOSFET. IEEE Electron Device Lett. 32(2), 185---187 (2011)
[16]
Luo, X., Luo, Y., Fan, Y., et al.: A low specific on-resistance SOI MOSFET with dual gates and a recessed drain. Chin. Phys. B 22(2), 434---438 (2013)
[17]
Shi, Y.M., Liu, J.Z., Yao, S.Y., Ding, Y.H., Zhang, W.H., Dai, H.L.: A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Phys. Sin. 63(23), 237305---237305 (2014)
[18]
Chen, X.B., Sin, J.K.O.: Optimization of the specific on-resistance of the COOLMOS TM. IEEE Trans. Electron Devices 48(2), 344---348 (2001)
[19]
Ishihara, K., Yung, C.F., Ayon, A.A., Schmidt, M.A.: Inertial sensor technology using DRIE and wafer bonding with connecting capability. J. Microelectromechanical Syst. 8(4), 403---408 (2000)
[20]
Jung, K.B., Song, W.J., Lim, H.W., Lee, C.S.: Parameter study for silicon grass formation in Bosch process. J. Vac.Sci. Technol. B Microelectron. Nanometer Struct. 28(1), 143---148 (2010)
[21]
Zhou, K., Luo, X., Li, Z., Zhang, B.: Analytical model and new structure of the variable-k dielectric trench LDMOS with improved breakdown voltage and specific on-resistance. IEEE Trans. Electron Devices 62(10), 3334---3340 (2015)
[22]
Wang, A., Bloking, J., Wang, L., Vellaikal, M., Jin, H.J., Lee, Y.S., et al.: Extending HDP for STI fill to 45nm with IPM. In: International Symposium on Semiconductor Manufacturing IEEE, 1---5 (2007)
[23]
Barnett, R.: Developments in Si and SiO2 etching for MEMS-based optical applications. Proc Spie 2, 44---53 (2004)
[24]
Schaepkens, M., Oehrlein, G.S.: A review of SiO2 etching studies in inductively coupled fluorocarbon plasmas. J. Electrochem. Soc. 148(3), C211---C221 (2001)

Cited By

View all
  • (2018)Investigation of a novel SOI LDMOS using p+ buried islands in the drift region by numerical simulationsJournal of Computational Electronics10.1007/s10825-018-1168-y17:2(646-652)Online publication date: 21-Dec-2018
  1. Simulation-based performance analysis of an ultra-low specific on-resistance trench SOI LDMOS with a floating vertical field plate

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Computational Electronics
    Journal of Computational Electronics  Volume 16, Issue 1
    March 2017
    219 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 March 2017

    Author Tags

    1. Breakdown voltage (BV)
    2. Floating vertical field plate (FVFP)
    3. Silicon on insulator (SOI)
    4. Specific on-resistance ($$R_\mathrm{{on
    5. sp)
    6. sp}}$$Ron

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 26 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Investigation of a novel SOI LDMOS using p+ buried islands in the drift region by numerical simulationsJournal of Computational Electronics10.1007/s10825-018-1168-y17:2(646-652)Online publication date: 21-Dec-2018

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media