Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters

Published: 01 March 2016 Publication History

Abstract

This paper discusses the numerical solution of linear 1-D singularly perturbed parabolic convection-diffusion-reaction problems with two small parameters using a moving mesh-adaptive algorithm which adapts meshes to boundary layers. The meshes are generated by the equidistribution of a special positive monitor function. Parameter independent uniform convergence is shown for a class of model problems and the obtained result hold even for the limiting case where the perturbation parameters are zero. Numerical experiments are presented that illustrate the first-order parameter uniform convergence, and also show that the new approach has better accuracy compared with current methods.

References

[1]
Arnold, D.: A concise introduction to numerical analysis. Manuscript (2001)
[2]
Beckett, M.G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistribted grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000)
[3]
Clavero, C., Jorge, J.C., Lisbona, F.: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math 154, 415–429 (2003)
[4]
Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES Comput. Model. Eng. Sci. 90, 463–485 (2013)
[5]
Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary value problems. Appl. Math. Comput. 249, 265–277 (2014)
[6]
Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth- order ordinary differential equations. Int. J. Comput. Math. 92(3), 562–578 (2015)
[7]
El-Gamel, M.: The sinc-Galerkin method for solving singularly perturbed reaction diffusion problem. Electron. Trans. Numer. Anal. 23, 129–140 (2006)
[8]
Emmrich, E.: Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9, 37–62 (2009)
[9]
Emmrich, E., Grigorieff, R.D.: Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order sobolev spaces. Comput. Methods Appl. Math. 6, 154–177 (2006)
[10]
Evans, G., Blackledge, J., Yardley, P.: Numerical methods for partial differential equations. Springer, Berlin (2000)
[11]
Gowrisankar, S., Natesan, S.: The parameter uniform numerical method for singularly perturbed parabolic reaction diffusion problems on equidistributed grids. Appl. Math. Lett. 26, 1053–1060 (2013)
[12]
Gowrisankar, S., Natesan, S.: Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids. Comput. Phys. Commun. 185, 2008–2019 (2014)
[13]
Huang, W.: Unconditionally stable high-order time integration for moving mesh finite difference solution of linear convection-diffusion equations. Int. J. Comput. Math. (2014). 10.1080/00207160.2014.927447
[14]
Huang, W., Kamenski, L.: A geometric discretization and a simple implementation for variational mesh generation and adaptation. (2014, ArXiv e-prints)
[15]
Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730 (1994)
[16]
Huang, W., Russell, R.D.: Adaptive moving mesh methods. Springer, New York (2011)
[17]
Kadalbajoo, M.K., Yadaw, A.S.: Parameter uniform finite element method for two parameter singularly perturbed parabolic reaction diffusion problems. Int. J. Comput. Methods. 9(4), (2012)
[18]
Kopteva, N., Stynes, M.: A robust adapive method for a quasilinear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)
[19]
Linß, T., Roos, H.: Analysis of finite difference schemes for a singularly perturbed problems with two parameters. J. Math. Anal. Appl. 289, 355–366 (2004)
[20]
Naidu, D.S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9(2), 233–278 (2002)
[21]
Naidu, D.S., Calise, A.: Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guidance Control Dynam. 24(6), 1057–1078 (2001)
[22]
Ramos, J.I.: An exponentially fitted method for singularly perturbed one dimensional parabolic problems. Appl. Math. Comput. 161, 513–525 (2005)
[23]
Rashidinia, J., Barati, A., Nabati, M.: Appication of sinc- Galerkin method to singulary perturbed parabolic convection diffusion problems. Numer. Algorithms 3, 643–662 (2014)
[24]
Riordan, E.O., Pickett, M.L., Shishkin, G.I.: Singularly perturbed problems modelling reaction-convection-diffusion processes. Comput. Methods Appl. Math. 3(3), 424–442 (2003)
[25]
Riordan, E.O., Pickett, M.L., Shishkin, G.I.: Parameter uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problemssingularly perturbed problems modelling reaction-convection-diffusion processes. Math. Comput. 75(255), 1136–1154 (2006)
[26]
Sikwila, S., Shateyi, S.: A moving mesh method for singularly perturbed problems. Abstr. Appl. Anal. 2013, 1–11 (2013)
[27]
Thalhammer, M.: On the convergence behavior of variable stepsize multistep methods for singularly perturbed problems. BIT 44, 343–361 (2004)
[28]
Varga, R.S.: Matrix iterative analysis, 2nd edn. Springer, New York (2009)
[29]
Vigo-Aguiar, J., Natesan, S.: A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27, 195–206 (2004)
[30]
Xu, X., Huang, W., Russell, R.D., Williams, J.F.: Convergence of de boors algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31, 580–596 (2011)
[31]
Zhang, Y., Naidu, D.S., Cai, C., Zou, Y.: Singular perturbations and time scales in control theory and applications: an overview 2002–2012. Int. J. Inf. Syst. Sci. 9(1), 1–36 (2014)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image BIT
BIT  Volume 56, Issue 1
Mar 2016
388 pages

Publisher

BIT Computer Science and Numerical Mathematics

United States

Publication History

Published: 01 March 2016

Author Tags

  1. Parabolic partial differential equation
  2. Convection-diffusion-reaction problem
  3. Adaptive mesh
  4. Moving mesh method
  5. Mesh equidistribution
  6. Singularly perturbed problem
  7. Upwind scheme
  8. Uniform convergence

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Singularly Perturbed Problems with Multi-Tempo Fast VariablesAutomation and Remote Control10.1134/S0005117922011001783:11(1679-1723)Online publication date: 1-Nov-2022
  • (2022)Two-grid finite element methods for nonlinear time-fractional parabolic equationsNumerical Algorithms10.1007/s11075-021-01205-790:2(709-730)Online publication date: 1-Jun-2022
  • (2021)Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layersNumerical Algorithms10.1007/s11075-020-00972-z87:1(409-444)Online publication date: 1-May-2021
  • (2019)Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting methodNumerical Algorithms10.1007/s11075-019-00795-784:3(1155-1178)Online publication date: 23-Aug-2019

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media