Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Haar Wavelet Approach to Compressed Image Quality Measurement

Published: 01 March 2000 Publication History

Abstract

The traditional mean-squared-error and peak-signal-to-noise-ratio error measures are mainly focused on the pixel-by-pixel difference between the original and compressed images. Such metrics are improper for subjective quality assessment, since human perception is very sensitive to specific correlations between adjacent pixels. In this work, we explore the Haar wavelet to model the space frequency localization property of human visual system (HVS) responses. It is shown that the physical contrast in different resolutions can be easily represented in terms of wavelet coefficients. By analyzing and modeling several visual mechanisms of the HVS with the Haar transform, we develop a new subjective fidelity measure which is more consistent with human observation experience.

References

[1]
P.G.J. Barten, Evaluation of subjective image quality with the square-root integral method, J. Opt. Soc. Am. A., 7 (1990) 2024-2031.
[2]
P.G.J. Barten, Physical model for the contrast sensitivity of the human eye, Human Vision, Visual Processing, and Digital Display III, 1666 (1992) 57-72.
[3]
J.B. Bergen, H.R. Wilson, J.D. Cowan, Further evidence for four mechanisms mediating vision at threshold: Sensitivities to complex gratings and aperiodic stimuli, J. Opt. Soc. Am., 69 (1979) 1580-1587.
[4]
F.W. Campbell, J.J. Kulikowski, Orientational selectivity of the human visual system, J. Physiol., 187 (1966) 437-445.
[5]
F.W. Campbell, J.J. Kulikowski, J. Levinson, The effect of orientation on the visual resolution of gratings, J. Physiol, 187 (1966) 427-436.
[6]
F.W. Campbell, J.G. Robson, Application of Fourier analysis to the visibility of gratings, J. Physiol., 197 (1968) 551-566.
[7]
M.W. Cannon, Perceived contrast in the fovea and periphery, J. Opt. Soc. Am. A, 2 (1985) 1760-1768.
[8]
C.R. Carlson, Sine-wave threshold contrast-sensitivity function: Dependence on display size, RCA Rev., 43 (1982) 675-683.
[9]
S. Daly, The visible differences predictor: An algorithm for the assessment of image fidelity, Human Vision, Visual Processing, and Digital Display III, 1666 (1992) 1-15.
[10]
I. Daubechies, Ten Lectures on Wavelets (1992).
[11]
J.G. Daugman, Two-dimensional spectral analysis of the cortical receptive field profiles, Vision Res, 20 (1980) 847-856.
[12]
K.K. De Valois, E. Switkes, Simultaneous masking interactions between chromatic and luminance gratings, J. Opt. Soc. Am., 73 (1983) 11-18.
[13]
R.L. De Valois, K.K. De Valois, Spatial Vision (1988).
[14]
J.M. Foley, Human luminance pattern-vision mechanisms: Masking experiments require a new model, J. Opt. Soc. Am. A, 11 (1994) 1710-1719.
[15]
D. Gabor, Theory of communication, J. Inst. Elect. Eng. (London), 93 (1946) 429-457.
[16]
M.A. Garc¿́a-Pérez, Space-variant visual processing: Spatially limited visual channels, Spatial Vision, 3 (1988) 129-142.
[17]
M.A. Garc¿́a-Pérez, The perceived image: Efficient modelling of visual inhomogeneity, Spatial Vision, 6 (1992) 89-99.
[18]
M.A. Georgeson, Contrast overconstancy, J. Opt. Soc. Am. A, 8 (1991) 579-586.
[19]
M.A. Georgeson, G.D. Sullivan, Contrast constancy: Deblurring in human vision by spatial frequency channels, J. Physiol, 252 (1975) 627-656.
[20]
D.J. Granrath, The role of human visual models in image processing, Proc. IEEE, 69 (1981) 552-561.
[21]
C.F. Hall, E.L. Hall, A nonlinear model for the spatial characteristics of the human visual system, IEEE Trans. Systems Man. Cybernet., 7 (1977) 161-170.
[22]
S. Hecht, The visual discrimination of intensity and the Weber¿Fechner law, Gen. Physiol., 7 (1924) 241.
[23]
R.F. Hess, A. Bradley, L. Piotrowski, Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia, Proc. R. Soc. London Ser. B, 217 (1983) 309-330.
[24]
G. Kaiser, A Friendly Guide to Wavelets (1994).
[25]
S.A. Karunasekera, N.G. Kingsbury, A distortion measure for blocking artifacts in images based on human visual sensitivity, IEEE Trans. Image Proces., 4 (1995) 713-724.
[26]
S.A. Klein, T. Carney, L. Barghout-Stein, C.W. Tyler, Seven Models of Masking, Human Vision and Electronic Imaging II, 3016 (1997).
[27]
C. J. van den Branden Lambrecht, A working spatio-temporal model of the human visual system for image restoration and quality assessment applications, in Proceedings 1996 Internatinal Conference on Acoustics, Speech, and Signal Processing, May 1996, pp. 2293-2296.
[28]
D. Costantini, C. J. van den Branden Lambrecht, G. L. Sicuranza, and M. Kunt, Motion rendition quality metric for MPEG coded video, in Proceedings 1996 IEEE International Conference on Image Processing, Sept. 1996, pp. 889-892.
[29]
G.E. Legge, A power law for contrast discrimination, Vision Res., 21 (1981) 457-467.
[30]
G.E. Legge, J.M. Foley, Contrast masking in human vision, J. Opt. Soc. Am., 70 (1980) 1458-1471.
[31]
H. Marmolin, Subjective MSE measures, IEEE Trans. Systems Man. Cybernet., 16 (1986) 486-489.
[32]
E. Peli, Contrast in complex images, J. Opt. Soc. Am. A., 7 (1990) 2032-2040.
[33]
E. Peli, Suprathreshold contrast perception across differences in mean luminance: effects of stimulus size, dichoptic presentation, and length of adaption, J. Opt. Soc. Am. A., 12 (1995) 817-823.
[34]
E. Peli, L. E. Arend, G. M. Young, and R. B. Goldstein, Contrast sensitivity to patch stimuli: Effects of spatial bandwidth and temporal presentation, Spatial Vision7, 1-14.
[35]
G.C. Phillips, H.R. Wilson, Orientation bandwidths of spatial mechanisms measured by masking, J. Opt. Soc. Am. A, 1 (1984) 226-232.
[36]
C. Poynton, Rehabilitation of gamma, Human Vision and Electronic Imaging III (1998).
[37]
R.St. John, B. Timney, K.E. Armstrong, A.B. Szpak, Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency, Spatial Vision, 2 (1987) 223-232.
[38]
G. Wallace, The JPEG still picture compression standard, Comm. ACM, 34 (1991) 31-44.
[39]
H.-J. Wang, C.-C.J. Kuo, A multi-threshold wavelet coder (MTWC) for high fidelity image compression, 1997 International Conference on Image Processing (ICIP 97) (1997).
[40]
A.B. Watson, Perceptual-component architecture for digital video, J. Opt. Soc. Am. A, 7 (1990) 1943-1954.
[41]
A.B. Watson, J.A. Solomon, A model of visual contrast gain control and pattern masking, J. Opt. Soc. Am. A., 14 (1997).

Cited By

View all
  • (2023)Hierarchical Model Compression via Shape-Edge Representation of Feature Maps—an Enlightenment From the Primate Visual SystemIEEE Transactions on Multimedia10.1109/TMM.2022.321647725(6958-6970)Online publication date: 1-Jan-2023
  • (2021)Image Quality Assessment Using Kernel Sparse CodingIEEE Transactions on Multimedia10.1109/TMM.2020.300147223(1592-1604)Online publication date: 1-Jan-2021
  • (2017)A visual model for quality driven refinement of global illuminationProceedings of the ACM Symposium on Applied Perception10.1145/3119881.3119893(1-8)Online publication date: 16-Sep-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation  Volume 11, Issue 1
March 2000
94 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 March 2000

Author Tags

  1. Haar transform
  2. compression artifact measure
  3. human visual system (HVS)
  4. image fidelity assessment
  5. wavelet transform

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Hierarchical Model Compression via Shape-Edge Representation of Feature Maps—an Enlightenment From the Primate Visual SystemIEEE Transactions on Multimedia10.1109/TMM.2022.321647725(6958-6970)Online publication date: 1-Jan-2023
  • (2021)Image Quality Assessment Using Kernel Sparse CodingIEEE Transactions on Multimedia10.1109/TMM.2020.300147223(1592-1604)Online publication date: 1-Jan-2021
  • (2017)A visual model for quality driven refinement of global illuminationProceedings of the ACM Symposium on Applied Perception10.1145/3119881.3119893(1-8)Online publication date: 16-Sep-2017
  • (2016)A New Method for Computed Tomography Angiography (CTA) Imaging via Wavelet Decomposition-Dependented Edge Matching InterpolationJournal of Medical Systems10.1007/s10916-016-0540-340:8(1-9)Online publication date: 1-Aug-2016
  • (2015)Compressed image quality metric based on perceptually weighted distortionIEEE Transactions on Image Processing10.1109/TIP.2015.248131924:12(5594-5608)Online publication date: 1-Dec-2015
  • (2011)An analysis of impostor based level of detail approximations for LIDAR dataProceedings of the 7th international conference on Advances in visual computing - Volume Part II10.5555/2045195.2045265(637-646)Online publication date: 26-Sep-2011
  • (2005)High Dynamic Range ImagingundefinedOnline publication date: 24-Aug-2005

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media