Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms

Published: 01 August 2011 Publication History

Abstract

The Planar Feedback Vertex Set problem asks whether an n-vertex planar graph contains at most k vertices meeting all its cycles. The Face Cover problem asks whether all vertices of a plane graph G lie on the boundary of at most k faces of G. Standard techniques from parameterized algorithm design indicate that both problems can be solved by sub-exponential parameterized algorithms (where k is the parameter). In this paper we improve the algorithmic analysis of both problems by proving a series of combinatorial results relating the branchwidth of planar graphs with their face cover. Combining this fact with duality properties of branchwidth, allows us to derive analogous results on feedback vertex set. As a consequence, it follows that Planar Feedback Vertex Set and Face Cover can be solved in $O(2^{15.11\cdot\sqrt{k}}+n^{2})$ and $O(2^{10.1\cdot\sqrt {k}}+n^{2})$ steps, respectively.

References

[1]
Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219---234 (2000) (electronic)
[2]
Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2007). Lecture Notes in Comput. Sci., vol. 4393, pp. 320---331. Springer, Berlin (2007)
[3]
Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In: Proceedings of the 3rd International Workshop on Exact and Parameterized Computation (IWPEC 2008). Lecture Notes in Comput. Sci., vol. 5018, pp. 160---171. Springer, Berlin (2008)
[4]
Bodlaender, H.L., Penninkx, E., Tan, R.B.: A linear kernel for the k-disjoint cycle problem on planar graphs. In: Proceedings of the 19th International Symposium on Algorithms and Computation (ISAAC 2008). Lecture Notes in Comput. Sci., vol. 5369, pp. 306---317. Springer, Berlin (2008)
[5]
Bodlaender, H., Fomin, F., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.: (Meta) kernelization. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009) (2009)
[6]
Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188---1198 (2008)
[7]
Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Oper. Res. Lett. 22(4---5), 111---118 (1998)
[8]
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866---893 (2005)
[9]
Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors. Algorithmica 41(4), 245---267 (2005)
[10]
Dorn, F.: Dynamic programming and fast matrix multiplication. In: Proceedings of the 14th Annual European Symposium on Algorithms (ESA 2006). Lecture Notes in Comput. Sci., vol. 4168, pp. 280---291. Springer, Berlin (2006)
[11]
Dorn, F.: Designing subexponential algorithms: problems, techniques & structures. PhD thesis, Department of Informatics, University of Bergen (2007)
[12]
Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: exploiting sphere cut branch decompositions. In: Proceedings of the 13th Annual European Symposium on Algorithms (ESA 2005). Lecture Notes in Comput. Sci., vol. 3669, pp. 95---106. Springer, Berlin (2005)
[13]
Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming in H-minor-free graphs. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 631---640 (2008)
[14]
Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Comput. Sci. Rev. 2(1), 29---39 (2008)
[15]
Fernau, H., Juedes, D.: A geometric approach to parameterized algorithms for domination problems on planar graphs. In: Proceedings of the 29th International Symposium on Mathematical Foundations of Computer (MFCS 2004). Lecture Notes in Comput. Sci., vol. 3153, pp. 488---499. Springer, Berlin (2004)
[16]
Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook of Combinatorial Optimization, Supplement Vol. A, pp. 209---258. Kluwer Academic, Dordrecht (1999)
[17]
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)
[18]
Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281---309 (2006) (electronic)
[19]
Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. J. Graph Theory 51(1), 53---81 (2006)
[20]
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293---307 (2008)
[21]
Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feedback problems in planar graphs. In: Integer Programming and Combinatorial Optimization, Vancouver, BC, 1996. Lecture Notes in Comput. Sci., vol. 1084, pp. 147---161. Springer, Berlin (1996)
[22]
Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feedback problems in planar graphs. Combinatorica 18(1), 37---59 (1998)
[23]
Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time. ACM Trans. Algorithms 4(3), 30:13 (2008)
[24]
Hicks, I.V.: Planar branch decompositions. I. The ratcatcher. INFORMS J. Comput. 17(4), 402---412 (2005)
[25]
Hicks, I.V.: Planar branch decompositions. II. The cycle method. INFORMS J. Comput. 17(4), 413---421 (2005)
[26]
Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Proceedings of the 28th International Workshop on Graph Theoretic Concepts in Computer Science (WG 2002). Lecture Notes in Comput. Sci., vol. 2573, pp. 282---295. Springer, Berlin (2002)
[27]
Lin, H.-M., Jou, J.-Y.: On computing the minimum feedback vertex set of a directed graph by contraction operations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19(3), 295---307 (2000)
[28]
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)
[29]
Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52(2), 153---190 (1991)
[30]
Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217---241 (1994)
[31]
Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 115---119. Society for Industrial and Applied Mathematics, Philadelphia (2009)

Cited By

View all
  • (2012)Fixed-Parameter tractability of treewidth and pathwidthThe Multivariate Algorithmic Revolution and Beyond10.5555/2344236.2344250(196-227)Online publication date: 1-Jan-2012
  1. Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Algorithmica
        Algorithmica  Volume 60, Issue 4
        August 2011
        312 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 August 2011

        Author Tags

        1. Branchwidth
        2. Face cover
        3. Feedback vertex set
        4. Parameterized algorithms

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 27 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2012)Fixed-Parameter tractability of treewidth and pathwidthThe Multivariate Algorithmic Revolution and Beyond10.5555/2344236.2344250(196-227)Online publication date: 1-Jan-2012

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media