Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3600270.3602153guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
research-article

Infinite-fidelity coregionalization for physical simulation

Published: 03 April 2024 Publication History

Abstract

Multi-fidelity modeling and learning is important in physical simulation related applications. It can leverage both low-fidelity and high-fidelity examples for training so as to reduce the cost of data generation yet still achieving good performance. While existing approaches only model finite, discrete fidelities, in practice, the feasible fidelity choice is often infinite, which can correspond to a continuous mesh spacing or finite element length. In this paper, we propose Infinite Fidelity Coregionalization (IFC). Given the data, our method can extract and exploit rich information within infinite, continuous fidelities to bolster the prediction accuracy. Our model can interpolate and/or extrapolate the predictions to novel fidelities that are not covered by the training data. Specifically, we introduce a low-dimensional latent output as a continuous function of the fidelity and input, and multiple it with a basis matrix to predict high-dimensional solution outputs. We model the latent output as a neural Ordinary Differential Equation (ODE) to capture the complex relationships within and integrate information throughout the continuous fidelities. We then use Gaussian processes or another ODE to estimate the fidelity-varying bases. For efficient inference, we reorganize the bases as a tensor, and use a tensor-Gaussian variational posterior approximation to develop a scalable inference algorithm for massive outputs. We show the advantage of our method in several benchmark tasks in computational physics.

References

[1]
Al-Kababji, A., Bensaali, F., and Dakua, S. P. (2022). Scheduling techniques for liver segmentation: Reducelronplateau vs onecyclelr. arXiv preprint arXiv:2202.06373.
[2]
Alvarez, M. and Lawrence, N. D. (2009). Sparse convolved gaussian processes for multi-output regression. In Advances in neural information processing systems, pages 57-64.
[3]
Alvarez, M., Luengo, D., Titsias, M., and Lawrence, N. (2010). Efficient multioutput gaussian processes through variational inducing kernels. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 25-32.
[4]
Alvarez, M., Ward, W., and Guarnizo, C. (2019). Non-linear process convolutions for multi-output gaussian processes. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1969-1977.
[5]
Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued functions: A review. Foundations and Trends® in Machine Learning, 4(3):195-266.
[6]
Bonilla, E. V., Agakov, F. V., and Williams, C. K. (2007). Kernel multi-task learning using task-specific features. In Artificial Intelligence and Statistics, pages 43-50.
[7]
Bonilla, E. V., Chai, K. M., and Williams, C. (2008). Multi-task gaussian process prediction. In Advances in neural information processing systems, pages 153-160.
[8]
Boyle, P. and Frean, M. (2005). Dependent gaussian processes. In Advances in neural information processing systems, pages 217-224.
[9]
Bozeman, J. D. and Dalton, C. (1973). Numerical study of viscous flow in a cavity. Journal of Computational Physics, 12(3):348-363.
[10]
Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations. Advances in neural information processing systems, 31.
[11]
Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathematics of computation, 22(104):745-762.
[12]
Conti, S. and O'Hagan, A. (2010). Bayesian emulation of complex multi-output and dynamic computer models. Journal of statistical planning and inference, 140(3):640-651.
[13]
Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and González, J. (2019). Deep gaussian processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320.
[14]
Damianou, A. and Lawrence, N. (2013). Deep gaussian processes. In Artificial Intelligence and Statistics, pages 207-215.
[15]
Dormand, J. R. and Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of computational and applied mathematics, 6(1):19-26.
[16]
Goovaerts, P. et al. (1997). Geostatistics for natural resources evaluation. Oxford University Press on Demand.
[17]
Goulard, M. and Voltz, M. (1992). Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Mathematical Geology, 24(3):269-286.
[18]
Hamelijnck, O., Damoulas, T., Wang, K., and Girolami, M. (2019). Multi-resolution multi-task gaussian processes. arXiv preprint arXiv:1906.08344.
[19]
Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. (2019). Multi-fidelity modeling using DGPs: Improvements and a generalization to varying input space dimensions. In NeurIPS Workshop on Bayesian Deep Learning.
[20]
Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative methods for current environmental issues, pages 37-56. Springer.
[21]
Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using high-dimensional output. Journal of the American Statistical Association, 103(482):570-583.
[22]
Incropera, F. P., Lavine, A. S., Bergman, T. L., and DeWitt, D. P. (2007). Fundamentals of heat and mass transfer. Wiley.
[23]
Journel, A. G. and Huijbregts, C. J. (1978). Mining geostatistics, volume 600. Academic press London.
[24]
Kennedy, M. C. and O'Hagan, A. (2000). Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1):1-13.
[25]
Keshavarzzadeh, V., Kirby, R. M., and Narayan, A. (2018). Parametric topology optimization with multi-resolution finite element models. arXiv preprint arXiv:1808.10367.
[26]
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[27]
Li, S., Wang, Z., Kirby, R. M., and Zhe, S. (2022). Deep multi-fidelity active learning of high-dimensional outputs. Proceedings of the Twenty-Fifth International Conference on Artificial Intelligence and Statistics.
[28]
Li, S., Xing, W., Kirby, R. M., and Zhe, S. (2021). Scalable Gaussian process regression networks. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pages 2456-2462.
[29]
Matheron, G. (1982). Pour une analyse krigeante des données régionalisées. Centre de Géostatistique, Report N-732, Fontainebleau.
[30]
Olsen-Kettle, L. (2011). Numerical solution of partial differential equations. Lecture notes at University of Queensland, Australia.
[31]
Parussini, L., Venturi, D., Perdikaris, P., and Karniadakis, G. E. (2017). Multi-fidelity gaussian process regression for prediction of random fields. Journal of Computational Physics, 336:36-50.
[32]
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32.
[33]
Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N., and Karniadakis, G. E. (2017). Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2198):20160751.
[34]
Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.
[35]
Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686-707.
[36]
Rakitsch, B., Lippert, C., Borgwardt, K., and Stegle, O. (2013). It is all in the noise: Efficient multi-task gaussian process inference with structured residuals. In Advances in neural information processing systems, pages 1466-1474.
[37]
Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite mixtures of gaussian process experts. In Advances in neural information processing systems, pages 881-888.
[38]
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.
[39]
Sigmund, O. (1997). On the design of compliant mechanisms using topology optimization. Journal of Structural Mechanics, 25(4):493-524.
[40]
Stegle, O., Lippert, C., Mooij, J. M., Lawrence, N. D., and Borgwardt, K. (2011). Efficient inference in matrix-variate gaussian models with\iid observation noise. In Advances in neural information processing systems, pages 630-638.
[41]
Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Now Publishers Inc.
[42]
Wang, Y. and Lin, G. (2020). Mfpc-net: Multi-fidelity physics-constrained neural process. arXiv preprint arXiv:2010.01378.
[43]
Wang, Z., Xing, W., Kirby, R., and Zhe, S. (2021). Multi-fidelity high-order Gaussian processes for physical simulation. In International Conference on Artificial Intelligence and Statistics, pages 847-855. PMLR.
[44]
Wilson, A. G., Knowles, D. A., and Ghahramani, Z. (2012). Gaussian process regression networks. In Proceedings of the 29th International Coference on International Conference on Machine Learning, pages 1139-1146. Omnipress.
[45]
Wu, D., Chinazzi, M., Vespignani, A., Ma, Y.-A., and Yu, R. (2022). Multi-fidelity hierarchical neural processes. arXiv preprint arXiv:2206.04872.
[46]
Xing, W., Shah, A. A., and Nair, P. B. (2015). Reduced dimensional gaussian process emulators of parametrized partial differential equations based on isomap. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 471, page 20140697. The Royal Society.
[47]
Xing, W., Triantafyllidis, V., Shah, A., Nair, P., and Zabaras, N. (2016). Manifold learning for the emulation of spatial fields from computational models. Journal of Computational Physics, 326:666-690.
[48]
Xing, W. W., Kirby, R. M., and Zhe, S. (2021a). Deep coregionalization for the emulation of simulation-based spatial-temporal fields. Journal of Computational Physics, 428:109984.
[49]
Xing, W. W., Shah, A. A., Wang, P., Zhe, S., Fu, Q., and Kirby, R. M. (2021b). Residual Gaussian process: A tractable nonparametric Bayesian emulator for multi-fidelity simulations. Applied Mathematical Modelling, 97:36-56.
[50]
Zhe, S., Xing, W., and Kirby, R. M. (2019). Scalable high-order gaussian process regression. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2611-2620.
[51]
Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., and Taylor, R. L. (1977). The finite element method, volume 36. McGraw-hill London.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS '22: Proceedings of the 36th International Conference on Neural Information Processing Systems
November 2022
39114 pages

Publisher

Curran Associates Inc.

Red Hook, NY, United States

Publication History

Published: 03 April 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media