Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2073946.2074013guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article
Free access

An uncertainty framework for classification

Published: 30 June 2000 Publication History

Abstract

We define a generalized likelihood function based on uncertainty measures and show that maximizing such a likelihood function for different measures induces different types of classifiers. In the probabilistic framework, we obtain classifiers that optimize the cross-entropy function. In the possibilistic framework, we obtain classifiers that maximize the interclass margin. Furthermore, we show that the support vector machine is a sub-class of these maximummargin classifiers.

References

[1]
Baum E.B., & Wilczek F. (1988). Supervised learning of probability distributions by neural networks. In Neural Information Processing Systems, editor D.Z. Anderson, pp.52-61.
[2]
Bezdek J.C., Keller J., Krisnapuram R., & Pal N.R., (1999). Fuuy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers.
[3]
Burges C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, pp. 121-167.
[4]
Cortes C., & Vapnik V. (1995). Support vector networks. Machine Learning, 20, pp.273-297.
[5]
Dempster A., Laird N., & Rubin D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39, pp.1-38.
[6]
Devroye L., Gyorfi L., & Lugosi G. (1996). A Probabilistic neory of Pattern Recognition. New York: Springer.
[7]
Gupta M.M., & Qi J. (1991). Theory of t-norms and fuzzy inference methods. Fuuy Sets and Systems, 40(3), pp.431-450.
[8]
Hertz, J., Krogh A., & Palmer R.G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley.
[9]
Hinton G.E. (1989). Connectionist learning procedures. Artificial Intelligence, 40, pp.185-234.
[10]
Jordan M., & Jacobs R. (1994). Hierarchical mixture of experts and the EM algorithm. Neural Computation, 6, pp.181-214.
[11]
Jurgen, S. (1996). Pattern classification: a unified view of statistical and neural approaches. New York: Wiley.
[12]
Klir G. J., & Yuan B. (1995). Fuuy Sets and Fuzzy Logic - Theory and Applications, New Jersey: Prentice Hall.
[13]
Langley P., Iba W., & Thompson K. (1992). An analysis of Bayesian classifiers. Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 223- 228.
[14]
Platt J.C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, editors A. Smola, P. Bartlett, B. Scholkopf, & D. Schuurmans. Cambridge: MIT-Press.
[15]
Rosenblatt F. (1962). Principles of Neurodynamics. New York: Spartan.
[16]
Rumelhart D.E., Hinton G.E., & Williams R.J. (1986). "Learning internal representations by error propagation". In Parallel Distributed Processing: Explorations in the Micro-structure of Cognition, Volume 1: Foundations, editors D.E. Rumelhart, & J.L. McClelland, Chap.8, pp.318-362. MIT press, Cambridge.
[17]
Scholkopf B., Sung K., Burges C., Girosi F., Nigogi P., Poggio T., & Vapnik V. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45, pp.2758-2765.
[18]
Sollich P. (1999). Probabilistic interpretations and Bayesian methods for support vector machines. Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN'99), pp.91-96.
[19]
Tanaka H., & Guo P. (1999). Discriminant analysis based on possibility distributions. Possibilistic Data Analysis for Operations Research, Chap.7, pp.149-164. Heidelberg: Physica-Verlag.
[20]
Yang Y., & Liu X. (1999). A re-examination of text categorization methods. Proceedings of the 22nd International Conference on R&D in Information Retrieval (SIGIR'99), pp.42-49.
[21]
Vapnik V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
UAI'00: Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence
June 2000
652 pages
ISBN:1558607099

Sponsors

  • HUGIN: Hugin Expert A/S
  • Information Extraction and Transportation
  • Hewlett-Packard
  • Fair, Isaac and Company, Inc.: Fair, Isaac and Company, Inc.
  • AT&T: AT&T Labs Research

Publisher

Morgan Kaufmann Publishers Inc.

San Francisco, CA, United States

Publication History

Published: 30 June 2000

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 51
    Total Downloads
  • Downloads (Last 12 months)40
  • Downloads (Last 6 weeks)11
Reflects downloads up to 23 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media