Nothing Special   »   [go: up one dir, main page]

skip to main content
Skip header Section
Distributed and Cloud Computing: From Parallel Processing to the Internet of ThingsOctober 2011
Publisher:
  • Morgan Kaufmann Publishers Inc.
  • 340 Pine Street, Sixth Floor
  • San Francisco
  • CA
  • United States
ISBN:978-0-12-385880-1
Published:31 October 2011
Pages:
672
Skip Bibliometrics Section
Reflects downloads up to 16 Nov 2024Bibliometrics
Skip Abstract Section
Abstract

From the leading minds in the field, Distributed and Cloud Computing is the first modern, up-to-date distributed systems textbook. Starting with an overview of modern distributed models, the book exposes the design principles, systems architecture, and innovative applications of parallel, distributed, and cloud computing systems. It will teach you how to create high-performance, scalable, reliable systems, providing comprehensive coverage of distributed and cloud computing, including: Facilitating management, debugging, migration, and disaster recovery through virtualization Clustered systems for research or ecommerce applications Designing systems as web services Social networking systems using peer-to-peer computing Principles of cloud computing using examples from open-source and commercial applications Using examples from open-source and commercial vendors, the text describes cloud-based systems for research, e-commerce, social networking and more. Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more Designed to meet the needs of students taking a distributed systems course, each chapter includes exercises and further reading, with lecture slides and solutions available online

References

  1. Amazon EC2 and S3, Elastic Compute Cloud (EC2) and Simple Scalable Storage (S3). http://en .wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud and http://spatten_presentations.s3.amazonaws .com/s3-on-rails.pdf.Google ScholarGoogle Scholar
  2. M. Baker, R. Buyya, Cluster computing at a glance, in: R. Buyya (Ed.), High-Performance Cluster Computing, Architecture and Systems, vol. 1, Prentice-Hall, Upper Saddle River, NJ, 1999, pp. 3-47, Chapter 1.Google ScholarGoogle Scholar
  3. A. Barak, A. Shiloh, The MOSIX Management System for Linux Clusters, Multi-Clusters, CPU Clusters, and Clouds, White paper. www.MOSIX.org//txt_pub.html, 2010.Google ScholarGoogle Scholar
  4. L. Barroso, U. Holzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Morgan & Claypool Publishers, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  5. G. Bell, J. Gray, A. Szalay, Petascale computational systems: balanced cyberstructure in a data-centric World, IEEE Comput. Mag. (2006). Google ScholarGoogle Scholar
  6. F. Berman, G. Fox, T. Hey (Eds.), Grid Computing, Wiley, 2003.Google ScholarGoogle Scholar
  7. M. Bever, et al., Distributed systems, OSF DCE, and beyond, in: A. Schill (Ed.), DCE-The OSF Distributed Computing Environment, Springer-Verlag, 1993, pp. 1-20. Google ScholarGoogle Scholar
  8. K. Birman, Reliable Distributed Systems: Technologies, Web Services, and Applications, Springer-Verlag, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Boss, et al., Cloud Computing-The BlueCloud Project. www.ibm.com/developerworks/websphere/zones/hipods/, October 2007.Google ScholarGoogle Scholar
  10. R. Buyya (Ed.), High-Performance Cluster Computing, Vol. 1 and 2, Prentice-Hall, Englewood Cliffs, NJ, 1999.Google ScholarGoogle Scholar
  11. R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and Paradigms, Wiley, 2011. Google ScholarGoogle Scholar
  12. T. Chou, Introduction to Cloud Computing: Business and Technology. Lecture Notes at Stanford University and Tsinghua University, Active Book Press, 2010.Google ScholarGoogle Scholar
  13. G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and Design, Wesley, 2005. Google ScholarGoogle Scholar
  14. D. Culler, J. Singh, A. Gupta, Parallel Computer Architecture, Kaufmann Publishers, 1999.Google ScholarGoogle Scholar
  15. B. Dally, GPU Computing to Exascale and Beyond, Keynote Address at ACM Supercomputing Conference, November 2010.Google ScholarGoogle Scholar
  16. J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in: Proceedings of OSDI 2004. Also, Communication of ACM, Vol. 51, 2008, pp. 107-113. Google ScholarGoogle Scholar
  17. J. Dongarra, et al. (Eds.), Source Book of Parallel Computing, Morgan Kaufmann, San Francisco, 2003. Google ScholarGoogle Scholar
  18. I. Foster, Y. Zhao, J. Raicu, S. Lu, Cloud Computing and Grid Computing 360-Degree Compared, Grid Computing Environments Workshop, 12-16 November 2008.Google ScholarGoogle Scholar
  19. D. Gannon, The Client+Cloud: Changing the Paradigm for Scientific Research, Keynote Address, IEEE CloudCom2010, Indianapolis, 2 November 2010.Google ScholarGoogle Scholar
  20. V.K. Garg, Elements of Distributed Computing. Wiley-IEEE Press, 2002. Google ScholarGoogle Scholar
  21. R. Ge, X. Feng, K. Cameron, Performance Constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters, in: Proceedings Supercomputing Conf., Washington, DC, 2005. Google ScholarGoogle Scholar
  22. S. Ghosh, Distributed Systems-An Algorithmic Approach, Chapman & Hall/CRC, 2007. Google ScholarGoogle Scholar
  23. B. He, W. Fang, Q. Luo, N. Govindaraju, T. Wang, Mars: A MapReduce Framework on Graphics Processor, ACM PACT'08, Toronto, Canada, 25-29 October 2008. Google ScholarGoogle Scholar
  24. J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann, 2007. Google ScholarGoogle Scholar
  25. T. Hey, et al., The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, 2009.Google ScholarGoogle Scholar
  26. M.D. Hill, et al., The Data Center as a Computer, Morgan & Claypool Publishers, 2009.Google ScholarGoogle Scholar
  27. K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programming, McGraw-Hill, 1993. Google ScholarGoogle Scholar
  28. K. Hwang, Z. Xu, Scalable Parallel Computing, McGraw-Hill, 1998. Google ScholarGoogle Scholar
  29. K. Hwang, S. Kulkarni, Y. Hu, Cloud Security with Virtualized Defense and Reputation-based Trust Management, in: IEEE Conference on Dependable, Autonomous, and Secure Computing (DAC-2009), Chengdu, China, 14 December 2009. Google ScholarGoogle Scholar
  30. K. Hwang, D. Li, Trusted Cloud Computing with Secure Resources and Data Coloring, in: IEEE Internet Computing, Special Issue on Trust and Reputation Management, September 2010, pp. 14-22. Google ScholarGoogle Scholar
  31. Kelton Research, Server Energy & Efficiency Report. www.1e.com/EnergyCampaign/downloads/Server_ Energy_and_Efficiency_Report_2009.pdf, September 2009.Google ScholarGoogle Scholar
  32. D. Kirk, W. Hwu, Programming Massively Processors: A Hands-on Approach, Morgan Kaufmann, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y.C. Lee, A.Y. Zomaya, A Novel State Transition Method for Metaheuristic-Based Scheduling in Heterogeneous Computing Systems, in: IEEE Transactions on Parallel and Distributed Systems, September 2008. Google ScholarGoogle Scholar
  34. Z.Y. Li, G. Xie, K. Hwang, Z.C. Li, Churn-Resilient Protocol for Massive Data Dissemination in P2P Networks, in: IEEE Trans. Parallel and Distributed Systems, May 2011. Google ScholarGoogle Scholar
  35. X. Lou, K. Hwang, Collusive Piracy Prevention in P2P Content Delivery Networks, in: IEEE Trans. on Computers, July, 2009, pp. 970-983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. NVIDIA Corp. Fermi: NVIDIA's Next-Generation CUDA Compute Architecture, White paper, 2009.Google ScholarGoogle Scholar
  37. D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G.F. Pfister, In Search of Clusters, Second ed., Prentice-Hall, 2001. Google ScholarGoogle Scholar
  39. J. Qiu, T. Gunarathne, J. Ekanayake, J. Choi, S. Bae, H. Li, et al., Hybrid Cloud and Cluster Computing Paradigms for Life Science Applications, in: 11th Annual Bioinformatics Open Source Conference BOSC 2010, 9-10 July 2010.Google ScholarGoogle Scholar
  40. M. Rosenblum, T. Garfinkel, Virtual machine monitors: current technology and future trends, IEEE Computer (May) (2005) 39-47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Rosenblum, Recent Advances in Virtual Machines and Operating Systems, Keynote Address, ACM ASPLOS 2006.Google ScholarGoogle Scholar
  42. J. Smith, R. Nair, Virtual Machines, Morgan Kaufmann, 2005.Google ScholarGoogle Scholar
  43. B. Sotomayor, R. Montero, I. Foster, Virtual Infrastructure Management in Private and Hybrid Clouds, IEEE Internet Computing, September 2009. Google ScholarGoogle Scholar
  44. SRI. The Internet of Things, in: Disruptive Technologies: Global Trends 2025, www.dni.gov/nic/PDF_GIF_Confreports/disruptivetech/appendix_F.pdf, 2010.Google ScholarGoogle Scholar
  45. A. Tanenbaum, Distributed Operating Systems, Prentice-Hall, 1995. Google ScholarGoogle Scholar
  46. I. Taylor, From P2P to Web Services and Grids, Springer-Verlag, London, 2005.Google ScholarGoogle Scholar
  47. Twister, Open Source Software for Iterative MapReduce, http://www.iterativemapreduce.org/.Google ScholarGoogle Scholar
  48. Wikipedia. Internet of Things, http://en.wikipedia.org/wiki/Internet_of_Things, June 2010.Google ScholarGoogle Scholar
  49. Wikipedia. CUDA, http://en.wikipedia.org/wiki/CUDA, March 2011.Google ScholarGoogle Scholar
  50. Wikipedia. TOP500, http://en.wikipedia.org/wiki/TOP500, February 2011.Google ScholarGoogle Scholar
  51. Y. Wu, K. Hwang, Y. Yuan, W. Zheng, Adaptive Workload Prediction of Grid Performance in Confidence Windows, in: IEEE Trans. on Parallel and Distributed Systems, July 2010. Google ScholarGoogle Scholar
  52. Z. Zong, Energy-Efficient Resource Management for High-Performance Computing Platforms, Ph.D. dissertation, Auburn University, 9 August 2008. Google ScholarGoogle Scholar
  53. N. Adiga, et al., An overview of the blue gene/L supercomputer, in: ACM Supercomputing Conference 2002, November 2002, http://SC-2002.org/paperpdfs/pap.pap207.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. D. Bader, R. Pennington, Cluster computing applications, Int. J. High Perform. Comput. (May) (2001). Google ScholarGoogle Scholar
  55. M. Baker, et al., Cluster computing white paper. http://arxiv.org/abs/cs/0004014, January 2001.Google ScholarGoogle Scholar
  56. A. Barak, A. Shiloh, The MOSIX Management Systems for Linux Clusters, Multi-Clusters and Clouds. White paper, www.MOSIX.org//txt_pub.html, 2010.Google ScholarGoogle Scholar
  57. A. Barak, R. La'adan, The MOSIX multicomputer operating systems for high-performance cluster computing, Future Gener. Comput. Syst. 13 (1998) 361-372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. L. Barroso, J. Dean, U. Holzle, Web search for a planet: The Google cluster architecture, IEEE Micro. 23 (2) (2003) 22-28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. R. Buyya (Ed.), High-Performance Cluster Computing. Vols. 1 and 2, Prentice Hall, New Jersey, 1999.Google ScholarGoogle Scholar
  60. O. Celebioglu, R. Rajagopalan, R. Ali, Exploring InfiniBand as an HPC cluster interconnect, (October) (2004).Google ScholarGoogle Scholar
  61. Cray, Inc, CrayXT System Specifications. www.cray.com/Products/XT/Specifications.aspx, January 2010.Google ScholarGoogle Scholar
  62. B. Dally, GPU Computing to Exascale and Beyond, Keynote Address, ACM Supercomputing Conference, November 2010.Google ScholarGoogle Scholar
  63. J. Dongarra, Visit to the National Supercomputer Center in Tianjin, China, Technical Report, University of Tennessee and Oak Ridge National Laboratory, 20 February 2011.Google ScholarGoogle Scholar
  64. J. Dongarra, Survey of present and future supercomputer architectures and their interconnects, in: International Supercomputer Conference, Heidelberg, Germany, 2004.Google ScholarGoogle Scholar
  65. K. Hwang, H. Jin, R.S. Ho, Orthogonal striping and mirroring in distributed RAID for I/O-Centric cluster computing, IEEE Trans. Parallel Distrib. Syst. 13 (2) (2002) 26-44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. K. Hwang, Z. Xu, Support of clustering and availability, in: Scalable Parallel Computing, McGraw-Hill, 1998, Chapter 9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. K. Hwang, C.M. Wang, C.L. Wang, Z. Xu, Resource scaling effects on MPP performance: STAP benchmark implications, IEEE Trans. Parallel Distrib. Syst. (May) (1999) 509-527. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. K. Hwang, H. Jin, E. Chow, C.L. Wang, Z. Xu, Designing SSI clusters with hierarchical checkpointing and single-I/O space, IEEE Concurrency (January) (1999) 60-69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. H. Jin, K. Hwang, Adaptive sector grouping to reduce false sharing of distributed RAID clusters, J. Clust. Comput. 4 (2) (2001) 133-143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. J. Kevin, et al., Entering the petaflop era: the architecture of performance of Roadrunner, www.c3.lanl .gov/~kei/mypubbib/papers/SC08:Roadrunner.pdf, November 2008.Google ScholarGoogle Scholar
  71. V. Kindratenko, et al., GPU Clusters for High-Performance Computing, National Center for Supercomputing Applications, University of Illinois at Urban-Champaign, Urbana, IL, 2009.Google ScholarGoogle Scholar
  72. K. Kopper, The Linux Enterprise Cluster: Building a Highly Available Cluster with Commodity Hardware and Free Software, No Starch Press, San Francisco, CA, 2005. Google ScholarGoogle Scholar
  73. S.W. Lin, R.W. Lau, K. Hwang, X. Lin, P.Y. Cheung, Adaptive parallel Image rendering on multiprocessors and workstation clusters. IEEE Trans. Parallel Distrib. Syst. 12 (3) (2001) 241-258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. J. Liu, D.K. Panda, et al., Performance comparison of MPI implementations over InfiniBand, Myrinet and Quadrics, (2003).Google ScholarGoogle Scholar
  75. R. Lucke, Building Clustered Linux Systems, Prentice Hall, New Jersey, 2005. Google ScholarGoogle Scholar
  76. E. Marcus, H. Stern, Blueprints for High Availability: Designing Resilient Distributed Systems, Wiley. Google ScholarGoogle Scholar
  77. TOP500.org. Top-500 World's fastest supercomputers, www.top500.org, November 2010.Google ScholarGoogle Scholar
  78. G.F. Pfister, In Search of Clusters, second ed., Prentice-Hall, 2001. Google ScholarGoogle Scholar
  79. N.H. Sun, China's Nebulae Supercomputer, Institute of Computing Technology, Chinese Academy of Sciences, July 2010.Google ScholarGoogle Scholar
  80. Wikipedia, IBM Roadrunner. http://en.wikipedia.org/wiki/IBM_Roadrunner, 2010, (accessed 10.01.10).Google ScholarGoogle Scholar
  81. Wikipedia, Tianhe-1. http://en.wikipedia.org/wiki/Tianhe-1, 2011, (accessed 5.02.11).Google ScholarGoogle Scholar
  82. Wikipedia, MOSIX. http://en.wikipedia.org/wiki/MOSIX, 2011, (accessed 10.02.11).Google ScholarGoogle Scholar
  83. Wikipedia, CUDA. http://en.wikipedia.org/wiki/CUDA, 2011, (accessed 19.02.11).Google ScholarGoogle Scholar
  84. K. Wong, M. Franklin, Checkpointing in distributed computing systems, J. Parallel Distrib. Comput. (1996) 67-75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Z. Xu, K. Hwang, Designing superservers with clusters and commodity components. Annual Advances in Scalable Computing, World Scientific, Singapore, 1999.Google ScholarGoogle Scholar
  86. Z. Xu, K. Hwang, MPP versus clusters for scalable computing, in: Proceedings of the 2nd IEEE International Symposium on Parallel Architectures, Algorithms, and Networks, June 1996, pp. 117-123. Google ScholarGoogle Scholar
  87. S. Zhou, LSF: Load Sharing and Batch Queuing Software, Platform Computing Corp., Canada, 1996.Google ScholarGoogle Scholar
  88. Advanced Micro Devices. AMD Secure Virtual Machine Architecture Reference Manual, 2008.Google ScholarGoogle Scholar
  89. K. Adams, O. Agesen, A comparison of software and hardware techniques for x86 virtualization, in: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, CA, October 2006, pp. 21-25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. V. Adve, C. Lattner, et al., LLVA: A low-level virtual instruction set architecture, in: Proceedings of the 36th International Symposium on Micro-architecture (MICRO-36 '03), 2003. Google ScholarGoogle ScholarCross RefCross Ref
  91. J. Alonso, L. Silva, A. Andrzejak, P. Silva, J. Torres, High-available grid services through the use of virtualized clustering, in: Proceedings of the 8th Grid Computing Conference, 2007. Google ScholarGoogle Scholar
  92. P. Anedda, M. Gaggero, et al., A general service-oriented approach for managing virtual machine allocation, in: Proceedings of the 24th Annual ACM Symposium on Applied Computing (SAC 2009), ACM Press, March 2009, pp. 9-12. Google ScholarGoogle ScholarCross RefCross Ref
  93. H. Andre Lagar-Cavilla, J.A. Whitney, A. Scannell, et al., SnowFlock: rapid virtual machine cloning for cloud computing, in: Proceedings of EuroSystems, 2009. Google ScholarGoogle Scholar
  94. P. Barham, B. Dragovic, K. Fraser, et al., Xen and the art of virtualization, in: Proceedings of the 19th ACM Symposium on Operating System Principles (SOSP19), ACM Press, 2003, pp. 164-177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. E. Bugnion, S. Devine, M. Rosenblum, Disco: running commodity OS on scalable multiprocessors, in: Proceedings of SOSP, 1997. Google ScholarGoogle Scholar
  96. R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and Paradigms, Wiley Press, New York, 2011. Google ScholarGoogle Scholar
  97. V. Chadha, R. Illikkal, R. Iyer, I/O Processing in a virtualized platform: a simulation-driven approach, in: Proceedings of the 3rd International Conference on Virtual Execution Environments (VEE), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. R. Chandra, N. Zeldovich, C. Sapuntzakis, M.S. Lam, The collective: a cache-based system management architecture, in: Proceedings of the Second Symposium on Networked Systems Design and Implementation (NSDI '05), USENIX, Boston, May 2005, pp. 259-272. Google ScholarGoogle Scholar
  99. J. Chase, L. Grit, D. Irwin, J. Moore, S. Sprenkle, Dynamic virtual cluster in a grid site manager, in: IEEE Int'l Symp. on High Performance Distributed Computing, (HPDC-12), 2003. Google ScholarGoogle Scholar
  100. D. Chisnall, The Definitive Guide to the Xen Hypervisor, Prentice Hall, International, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. C. Clark, K. Fraser, S. Hand, et al., Live migration of virtual machines, in: Proceedings of the Second Symposium on Networked Systems Design and Implementation (NSDI '05), 2005, pp. 273-286. Google ScholarGoogle Scholar
  102. Y. Dong, J. Dai, et al., Towards high-quality I/O virtualization, in: Proceedings of SYSTOR 2009, The Israeli Experimental Systems Conference, 2009. Google ScholarGoogle Scholar
  103. E. Elnozahy, M. Kistler, R. Rajamony, Energy-efficient server clusters, in: Proceedings of the 2nd Workshop on Power-Aware Computing Systems, February 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. J. Frich, et al., On the potential of NoC virtualization for multicore chips, in: IEEE Int'l Conf. on Complex, Intelligent and Software-Intensive Systems, 2008, pp. 801-807. Google ScholarGoogle Scholar
  105. T. Garfinkel, M. Rosenblum, A virtual machine introspection-based architecture for intrusion detection, 2002.Google ScholarGoogle Scholar
  106. L. Grit, D. Irwin, A. Yumerefendi, J. Chase, Virtual machine hosting for networked clusters: building the foundations for autonomic orchestration, in: First International Workshop on Virtualization Technology in Distributed Computing (VTDC), November 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. D. Gupta, S. Lee, M. Vrable, et al., Difference engine: Harnessing memory redundancy in virtual machines, in: Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI '08), 2008, pp. 309-322. Google ScholarGoogle Scholar
  108. M. Hines, K. Gopalan, Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning, in: Proceedings of the ACM/USENIX International Conference on Virtual Execution Environments (VEE '09), 2009, pp. 51-60. Google ScholarGoogle Scholar
  109. T. Hirofuchi, H. Nakada, et al., A live storage migration mechanism over WAN and its performance evaluation, in: Proceedings of the 4th International Workshop on Virtualization Technologies in Distributed Computing, 15 June, ACM Press, Barcelona, Spain, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. K. Hwang, D. Li, Trusted cloud computing with secure resources and data coloring, IEEE Internet Comput., (September/October) (2010) 30-39. Google ScholarGoogle Scholar
  111. Intel Open Source Technology Center, System Virtualization--Principles and Implementation, Tsinghua University Press, Beijing, China, 2009.Google ScholarGoogle Scholar
  112. X. Jiang, D. Xu, VIOLIN: Virtual internetworking on overlay infrastructure, in: Proceedings of the International Symposium on Parallel and Distributed Processing and Applications, 2004, pp. 937-946. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. H. Jin, L. Deng, S. Wu, X. Shi, X. Pan, Live virtual machine migration with adaptive memory compression, in: Proceedings of the IEEE International Conference on Cluster Computing, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  114. K. Jin, E. Miller, The effectiveness of deduplication on virtual machine disk images, in: Proceedings of SYSTOR, 2009, The Israeli Experimental Systems Conference, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. S. Jones, A. Arpaci-Disseau, R. Arpaci-Disseau, Geiger: Monitoring the buffer cache in a virtual machine environment, in: ACM ASPLOS, San Jose, CA, October 2006, pp. 13-14. Google ScholarGoogle Scholar
  116. F. Kamoun, Virtualizing the datacenter without compromising server performance, ACM Ubiquity 2009, (9) (2009). Google ScholarGoogle Scholar
  117. D. Kim, H. Kim, J. Huh, Virtual snooping: Filtering snoops in virtualized multi-coures, in: 43rd Annual IEEE/ACM Int'l Symposium on Mcrosrchitecture (MICRO-43). Google ScholarGoogle Scholar
  118. A. Kivity, et al., KVM: The linux virtual machine monitor, in: Proceedings of the Linux Symposium, Ottawa, Canada, 2007, p. 225.Google ScholarGoogle Scholar
  119. A. Kochut, On impact of dynamic virtual machine reallocation on data center efficiency, in: Proceedings of the IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems (MASCOTS), 2008.Google ScholarGoogle ScholarCross RefCross Ref
  120. R. Kumar, et al., Heterogeneous chip multiptiprocessors, IEEE Comput. Mag. 38 (November) (2005) 32-38. Google ScholarGoogle Scholar
  121. B. Kyrre, Managing large networks of virtual machines, in: Proceedings of the 20th Large Installation System Administration Conference, 2006, pp. 205-214. Google ScholarGoogle Scholar
  122. J. Lange, P. Dinda, Transparent network services via a virtual traffic layer for virtual machines, in: Proceedings of High Performance Distributed Computing, ACM Press, Monterey, CA, pp. 25-29, June 2007. Google ScholarGoogle Scholar
  123. A. Liguori, E. Hensbergen, Experiences with content addressable storage and virtual disks, in: Proceedings of the Workshop on I/O Virtualization (WIOV '08), 2008. Google ScholarGoogle Scholar
  124. H. Liu, H. Jin, X. Liao, L. Hu, C. Yu, Live migration of virtual machine based on full system trace and replay, in: Proceedings of the 18th International Symposium on High Performance Distributed Computing (HPDC '09), 2009, pp. 101-110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. A. Mainwaring, D. Culler, Design challenges of virtual networks: Fast, general-purpose communication, in: Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming, 1999. Google ScholarGoogle Scholar
  126. M. Marty, M. Hill, Virtual hierarchies to support server consolidation, in: Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. M. McNett, D. Gupta, A. Vahdat, G.M. Voelker, Usher: An extensible framework for managing clusters of virtual machines, in: 21st Large Installation System Administration Conference (LISA) 2007. Google ScholarGoogle Scholar
  128. D. Menasce, Virtualization: Concepts, applications., performance modeling, in: Proceedings of the 31st International Computer Measurement Group Conference, 2005, pp. 407-414.Google ScholarGoogle Scholar
  129. A. Menon, J. Renato, Y. Turner, Diagnosing performance overheads in the Xen virtual machine environment, in: Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution Environments, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. D. Meyer, et al., Parallax: Virtual disks for virtual machines, in: Proceedings of EuroSys, 2008. Google ScholarGoogle Scholar
  131. J. Nick, Journey to the private cloud: Security and compliance, in: Technical presentation by EMC Visiting Team, May 25, Tsinghua University, Beijing, 2010.Google ScholarGoogle Scholar
  132. D. Nurmi, et al., The eucalyptus open-source cloud computing system, in: Proceedings of the 9th IEEE ACM International Symposium on Cluster Computing and The Grid (CCGrid), Shanghai, China, September 2009, pp. 124-131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. P. Padala, et al., Adaptive control of virtualized resources in utility computing environments, in: Proceedings of EuroSys 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. L. Peterson, A. Bavier, M.E. Fiuczynski, S. Muir, Experiences Building PlanetLab, in: Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI2006), 6-8 November 2006. Google ScholarGoogle Scholar
  135. B. Pfaff, T. Garfinkel, M. Rosenblum, Virtualization aware file systems: Getting beyond the limitations of virtual disks, in: Proceedings of USENIX Networked Systems Design and Implementation (NSDI 2006), May 2006, pp. 353-366. Google ScholarGoogle Scholar
  136. E. Pinheiro, R. Bianchini, E. Carrera, T. Heath, Dynamic cluster reconfiguration for power and performance, in: L. Benini (Ed.), Compilers and Operating Systems for Low Power, Kluwer Academic Publishers, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. H. Qian, E. Miller, et al., Agility in virtualized utility computing, in: Proceedings of the Third International Workshop on Virtualization Technology in Distributed Computing (VTDC 2007), 12 November 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. H. Raj, I. Ganev, K. Schwan, Self-Virtualized I/O: High Performance, Scalable I/O Virtualization in Multi-core Systems, Technical Report GIT-CERCS-06-02, CERCS, Georgia Tech, 2006, www.cercs. gatech.edu/tech-reports/tr2006/git-cercs-06-02.pdf.Google ScholarGoogle Scholar
  139. J. Robin, C. Irvine, Analysis of the Intel pentium's ability to support a secure virtual machine monitor, in: Proceedings of the 9th USENIX Security Symposium Vol. 9, 2000. Google ScholarGoogle ScholarCross RefCross Ref
  140. M. Rosenblum, The reincarnation of virtual machines, ACM QUEUE, (July/August) (2004). Google ScholarGoogle Scholar
  141. M. Rosenblum, T. Garfinkel, Virtual machine monitors: current technology and future trends, IEEE Comput 38 (5) (2005) 39-47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. P. Ruth, et al., Automatic Live Migration of Virtual Computational Environments in a Multidomain Infrastructure, Purdue University, 2006.Google ScholarGoogle Scholar
  143. C. Sapuntzakis, R. Chandra, B. Pfaff, et al., Optimizing the migration of virtual computers, in: Proceedings of the 5th Symposium on Operating Systems Design and Implementation, Boston, 9-11 December 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. L. Shi, H. Chen, J. Sun, vCUDA: GPU accelerated high performance computing in virtual machines, in: Proceedings of the IEEE International Symposium on Parallel and Distributed Processing, 2009. Google ScholarGoogle Scholar
  145. J. Smith, R. Nair, Virtual Machines: Versatile Platforms for Systems and Processes, Morgan Kaufmann, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. J. Smith, R. Nair, The architecture of virtual machines, IEEE Comput., (May) (2005). Google ScholarGoogle Scholar
  147. Y. Song, H. Wang, et al., Multi-tiered on-demand resource scheduling for VM-based data center, in: Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. B. Sotomayor, K. Keahey, I. Foster, Combining batch execution and leasing using virtual machines, in: Proceedings of the 17th International Symposium on High-Performance Distributed Computing, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. M. Steinder, I. Whalley, et al., Server virtualization in autonomic management of heterogeneous workloads, ACM SIGOPS Oper. Syst. Rev. 42 (1) (2008) 94-95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. M. Suleman, Y. Patt, E. Sprangle, A. Rohillah, Asymmetric chip multiprocessors: balancing hardware efficiency and programming efficiency, (2007).Google ScholarGoogle Scholar
  151. Sun Microsystems. Solaris Containers: Server Virtualization and Manageability, Technical white paper, September 2004.Google ScholarGoogle Scholar
  152. SWsoft, Inc. OpenVZ User's Guide, http://ftp.openvz.org/doc/OpenVZ-Users-Guide.pdf, 2005.Google ScholarGoogle Scholar
  153. F. Trivino, et al., Virtualizing netwoirk on chip resources in chip multiprocessors, J. Microprocess. Microsyst. 35 (2010). 245-230 http://www.elsevier.com/locate/micro. Google ScholarGoogle Scholar
  154. J. Xu, M. Zhao, et al., On the use of fuzzy modeling in virtualized datacenter management, in: Proceedings of the 4th International Conference on Autonomic Computing (ICAC07), 2007. Google ScholarGoogle Scholar
  155. R. Ublig, et al., Intel virtualization technology, IEEE Comput., (May) (2005). Google ScholarGoogle Scholar
  156. H. Van, F. Tran, Autonomic virtual resource management for service hosting platforms, CLOUD (2009).Google ScholarGoogle Scholar
  157. A. Verma, P. Ahuja, A. Neogi, pMapper: Power and migration cost aware application placement in virtualized systems, in: Proceedings of the 9th International Middleware Conference, 2008, pp. 243-264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. VMware (white paper). Understanding Full Virtualization, Paravirtualization, and Hardware Assist, www.vmware.com/files/pdf/VMware_paravirtualization.pdf.Google ScholarGoogle Scholar
  159. VMware (white paper). The vSphere 4 Operating System for Virtualizing Datacenters, News release, February 2009, www.vmware.com/products/vsphere/, April 2010.Google ScholarGoogle Scholar
  160. J. Walters, et al., A comparison of virtualization technologies for HPC, in: Proceedings of Advanced Information Networking and Applications (AINA), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. P. Wells, K. Chakraborty, G.S. Sohi, Dynamic heterogeneity and the need for multicore virtualization, ACM SIGOPS Operat. Syst. Rev. 43 (2) (2009) 5-14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. T. Wood, G. Levin, P. Shenoy, Memory buddies: Exploiting page sharing for smart collocation in virtualized data centers, in: Proceedings of the 5th International Conference on Virtual Execution Environments (VEE), 2009. Google ScholarGoogle Scholar
  163. J. Xun, K. Chen, W. Zheng, Amigo file system: CAS based storage management for a virtual cluster system, in: Proceedings of IEEE 9th International Conference on Computer and Information Technology (CIT), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. Y. Yu, OS-level Virtualization and Its Applications, Ph.D. dissertation, Computer Science Department, SUNY, Stony Brook, New York, December 2007. Google ScholarGoogle Scholar
  165. Y. Yu, F. Guo, et al., A feather-weight virtual machine for windows applications, in: Proceedings of the 2nd International Conference on Virtual Execution Environments (VEE), Ottawa, Canada, 14-16 June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. M. Zhao, J. Zhang, et al., Distributed file system support for virtual machines in grid computing, in: Proceedings of High Performance Distributed Computing, 2004. Google ScholarGoogle Scholar
  167. K. Aberer, Z. Despotovic, Managing trust in a peer-to-peer information system, in: ACM CIKM International Conference on Information and Knowledge Management, 2001. Google ScholarGoogle Scholar
  168. M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity datacenter network architecture, in: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, Seattle, WA, 17-22 August 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. Amazon EC2 and S3. Elastic Compute Cloud (EC2) and Simple Scalable Storage (S3). http://spatten_ presentations.s3.amazonaws.com/s3-on-rails.pdf.Google ScholarGoogle Scholar
  170. M. Armbrust, A. Fox, R. Griffith, et al., Above the Clouds: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28, University of California at Berkley, 10 February 2009.Google ScholarGoogle Scholar
  171. I. Arutyun, et al., Open circus: a global cloud computing testbed, IEEE Comput. Mag. (2010) 35-43. Google ScholarGoogle Scholar
  172. P. Barham, et al., Xen and the art of virtualization, in: Proceedings of the 19th ACM Symposium on Operating System Principles, ACM Press, New York, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. L. Barroso, J. Dean, U. Holzle, Web search for a planet: the architecture of the Google cluster, IEEE Micro (2003), doi: 10.1109/MM.2003.1196112. Google ScholarGoogle Scholar
  174. L. Barroso, U. Holzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Morgan Claypool Publishers, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  175. G. Boss, P. Mllladi, et al., Cloud computing: the bluecloud project. www.ibm.com/developerworks/websphere/zones/hipods/, 2007.Google ScholarGoogle Scholar
  176. R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and Paradigms, Wiley Press, 2011. Google ScholarGoogle Scholar
  177. R. Buyya, C.S. Yeo, S. Venugopal, Market-oriented cloud computing: vision, hype, and reality for delivering IT services as computing utilities, in: Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications (HPCC), Dalian, China, 25-27 September 2008. Google ScholarGoogle Scholar
  178. R. Buyya, R. Ranjan, R.N. Calheiros, InterCloud: utility-oriented federation of cloud computing environments for scaling of application services, in: Proceedings of the 10th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2010, LNCS 608), Busan, South Korea, 21-23 May 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. M. Cai, K. Hwang, J. Pan, C. Papadopoulos, WormShield: fast worm signature generation with distributed fingerprint aggregation, in: IEEE Transactions of Dependable and Secure Computing (TDSC), Vol. 4, No. 2, April/June 2007, pp. 88-104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Chase, et al., Dynamic virtual clusters in a grid site manager, in: IEEE 12th Symposium on High-Performance Distributed Computing (HPDC), 2003. Google ScholarGoogle Scholar
  181. Y. Chen, K. Hwang, W.S. Ku, Collaborative detection of DDoS attacks over multiple network domains, in: IEEE Transaction on Parallel and Distributed Systems, Vol. 18, No. 12, December 2007, pp. 1649-1662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. T. Chou, Introduction to Cloud Computing: Business and Technology, Active Book Press, 2010.Google ScholarGoogle Scholar
  183. C. Clark, K. Fraser, J. Hansen, et al., Live migration of virtual machines, in: Proceedings of the Second Symposium on Networked Systems Design and Implementation, Boston, MA, 2 May 2005, pp. 273-286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Cloud Computing Tutorial. www.thecloudtutorial.com, January 2010.Google ScholarGoogle Scholar
  185. Cloud Security Alliance, Security guidance for critical areas of focus in cloud computing, April 2009.Google ScholarGoogle Scholar
  186. C. Collberg, C. Thomborson, Watermarking, temper-proofing, and obfuscation tools for software protection, IEEE Trans. Software Eng. 28 (2002) 735-746. Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. A. Costanzo, M. Assuncao, R. Buyya, Harnessing cloud technologies for a virtualized distributed computing infrastructure, IEEE Internet Comput. (2009). Google ScholarGoogle Scholar
  188. D. Dyer, Current trends/Challenges in datacenter thermal management--A facilities perspective, in: Presentation at ITHERM, San Diego, 1 June 2006.Google ScholarGoogle Scholar
  189. Q. Feng, K. Hwang, Y. Dai, Rainbow product ranking for upgrading e-commerce, IEEE Internet Comput. (2009). Google ScholarGoogle Scholar
  190. I. Foster, The grid: computing without bounds, Sci. Am. 288 (4) (2003) 78-85.Google ScholarGoogle ScholarCross RefCross Ref
  191. I. Foster, Y. Zhao, J. Raicu, S. Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 12-16 November 2008.Google ScholarGoogle ScholarCross RefCross Ref
  192. D. Gannon, The client+cloud: changing the paradigm for scientific research, Keynote address, in: CloudCom 2010, Indianapolis, 2 November 2010.Google ScholarGoogle Scholar
  193. Google Inc, Efficient data center summit. www.google.com/corporate/green/datacenters/summit.html, 2009.Google ScholarGoogle Scholar
  194. Green Grid, Quantitative analysis of power distribution configurations for datacenters. www.thegreengrid .org/gg_content/.Google ScholarGoogle Scholar
  195. A. Greenberg, J. Hamilton, D. Maltz, P. Patel, The cost of a cloud: research problems in datacenter networks, in: ACM SIGCOMM Computer Communication Review, Vol. 39, No. 1, January 2009. Google ScholarGoogle Scholar
  196. C. Guo, G. Lu, et al., BCube: a high-performance server-centric network architecture for modular datacenters, in: ACM SIGCOMM Computer Communication Review, Vol. 39, No. 44, October 2009. Google ScholarGoogle Scholar
  197. E. Hakan, Cloud computing: does Nirvana hide behind the Nebula? IEEE Softw. (2009). Google ScholarGoogle Scholar
  198. B. Hayes, Cloud computing, Commun. ACM 51 (2008) 9-11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. C. Hoffa, et al., On the use of cloud computing for scientific workflows, in: IEEE Fourth International Conference on eScience, December 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. R. He, J. Hu, J. Niu, M. Yuan, A novel cloud-based trust model for pervasive computing, in: Fourth International Conference on Computer and Information Technology, 14-16 September 2004, pp. 693-700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. K. Hwang, S. Kulkarni, Y. Hu, Cloud security with virtualized defense and reputation-based trust management, in: IEEE International Conference on Dependable, Autonomic, and Secure Computing (DASC 09), Chengdu, China, 12-14 December 2009. Google ScholarGoogle Scholar
  202. K. Hwang, D. Li, Trusted cloud computing with secure resources and data coloring, IEEE Internet Comput. (2010). Google ScholarGoogle Scholar
  203. K. Hwang, M. Cai, Y. Chen, M. Qin, Hybrid intrusion detection with weighted signature generation over anomalous internet episodes, in: IEEE Transactions on Dependable and Secure Computing, Vol.4, No.1, January-March 2007, pp. 41-55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. V. Jinesh, Cloud Architectures, White paper, Amazon. http://aws.amazon.com/about-aws/whats-new/2008/07/16/cloud-architectures-white-paper/.Google ScholarGoogle Scholar
  205. D. Kamvar, T. Schlosser, H. Garcia-Molina, The EigenTrust algorithm for reputation management in P2P networks, in: Proceedings of the 12th International Conference on the World Wide Web, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. K. Keahey, M. Tsugawa, A. Matsunaga, J. Fortes, Sky computing, IEEE Internet Comput., (2009). Google ScholarGoogle Scholar
  207. Kivit, et al., KVM: the linux virtual machine monitor, in: Proceedings of the Linux Symposium, Ottawa, Canada, 2007, p. 225.Google ScholarGoogle Scholar
  208. KVM Project, Kernel-based virtual machines. www.linux-kvm.org, 2011 (accessed 02.11).Google ScholarGoogle Scholar
  209. G. Lakshmanan, Cloud Computing: Relevance to Enterprise, Infosys Technologies, Inc., 2009.Google ScholarGoogle Scholar
  210. N. Leavitt, et al., Is cloud computing really ready for prime time? IEEE Comput. 42 (1) (2009) 15-20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. D. Li, H. Meng, X. Shi, Membership clouds and membership cloud generator, J. Comput. Res. Dev. 32 (6) (1995) 15-20.Google ScholarGoogle Scholar
  212. D. Li, C. Liu, W. Gan, A new cognitive model: cloud model, Int. J. Intell. Syst. (2009). Google ScholarGoogle Scholar
  213. D. Linthicum, Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step Guide, Addison Wesley Professional, 2009. Google ScholarGoogle Scholar
  214. X. Lou, K. Hwang, Collusive piracy prevention in P2P content delivery networks, IEEE Trans. Comput., (2009). Google ScholarGoogle Scholar
  215. M. Luis, Vaquero, L. Rodero-Merino, et al., A break in the clouds: towards a cloud definition, in: ACM SIGCOMM Computer Communication Review Archive, January 2009. Google ScholarGoogle Scholar
  216. D. Manchala, E-Commerce trust metrics and models, IEEE Internet Comput. (2000). Google ScholarGoogle Scholar
  217. T. Mather, et al., Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, O'Reilly Media, Inc., 2009. Google ScholarGoogle Scholar
  218. L. Mei, W. Chan, T. Tse, A tale of clouds: paradigm comparisons and some thoughts on research issues, in: IEEE Asia-Pacific Services Computing Conference, December 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. D. Nelson, M. Ryan, S. DeVito, et al., The role of modularity in datacenter design, Sun BluePrints. www.sun .com/storagetek/docs/EED.pdf.Google ScholarGoogle Scholar
  220. M. Nelson, B.H. Lim, G. Hutchins, Fast transparent migration for virtual machines, in: Proceedings of the USENIX 2005 Annual Technical Conference, Anaheim, CA, 10-15 April 2005, pp. 391-394. Google ScholarGoogle Scholar
  221. D. Nurmi, R. Wolski, et al., Eucalyptus: an Elastic utility computing architecture linking your programs to useful systems, in: UCSB Computer Science Technical Report No. 2008-10, August 2008.Google ScholarGoogle Scholar
  222. W. Norman, M. Paton, T. de Aragao, et al., Optimizing utility in cloud computing through autonomic workload execution, in: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2009.Google ScholarGoogle Scholar
  223. D.A. Patterson, et al., Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies, UC Berkeley CS Technical Report UCB//CSD-02-1175, 15 March 2002. Google ScholarGoogle Scholar
  224. M. Pujol, et al., Extracting reputation in multi-agent systems by means of social network topology, in: Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  225. S. Roschke, F. Cheng, C. Meinel, Intrusion detection in the cloud, in: IEEE International Conference on Dependable, Autonomic, and Secure Computing (DASC 09), 13 December 2009. Google ScholarGoogle Scholar
  226. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, X. Zhu, No 'power' struggles: coordinated multi-level power management for the datacenter, in: Proceedings of the ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Seattle, WA, March 2008. Google ScholarGoogle Scholar
  227. D. Reed, Clouds, clusters and many core: the revolution ahead, in: Proceedings of the 2008 IEEE International Conference on Cluster Computing, 29 September-1 October 2008.Google ScholarGoogle ScholarCross RefCross Ref
  228. J. Rittinghouse, J. Ransome, Cloud Computing: Implementation, Management, and Security, CRC Publishers, 2010. Google ScholarGoogle Scholar
  229. B. Rochwerger, D. Breitgand, E. Levy, et al., The RESERVOIR Model and Architecture for Open Federated Cloud Computing, IBM Syst. J. (2008). Google ScholarGoogle Scholar
  230. R.N. Calheiros, R. Ranjan, C.A.F. De Rose, R. Buyya, CloudSim: a novel framework for modeling and simulation of cloud computing infrastructures and services, Technical Report, GRIDS-TR-2009-1, University of Melbourne, Australia, 13 March 2009.Google ScholarGoogle Scholar
  231. Salesforce.com, http://en.wikipedia.org/wiki/Salesforce.com/, 2010.Google ScholarGoogle Scholar
  232. H. Shen, K. Hwang, Locality-preserving clustering and discovery of resources in wide-area computational grids, IEEE Trans. Comput. (2011) Accepted To Appear. Google ScholarGoogle Scholar
  233. S. Song, K. Hwang, R. Zhou, Y. Kwok, Trusted P2P transactions with fuzzy reputation aggregation, in: IEEE Internet Computing, Special Issue on Security for P2P and Ad Hoc Networks, November 2005, pp. 24-34. Google ScholarGoogle Scholar
  234. B. Sotomayor, R. Montero, I. Foster, Virtual infrastructure management in private and hybrid clouds, IEEE Internet Comput. (2009). Google ScholarGoogle Scholar
  235. G. Stuer, K. Vanmechelena, J. Broeckhovea, A commodity market algorithm for pricing substitutable grid resources, Future Gener. Comput. Syst. 23 (5) (2007) 688-701. Google ScholarGoogle ScholarDigital LibraryDigital Library
  236. C. Vecchiola, X. Chu, R. Buyya, Aneka: a software platform for.NET-based cloud computing, in: W. Gentzsch, et al. (Eds.), High Speed and Large Scale Scientific Computing, IOS Press, Amsterdam, Netherlands, 2009, pp. 267-295.Google ScholarGoogle Scholar
  237. T. Velte, A. Velite, R. Elsenpeter, Cloud Computing, A Practical Approach, McGraw-Hill Osborne Media, 2010. Google ScholarGoogle Scholar
  238. S. Venugopal, X. Chu, R. Buyya, A negotiation mechanism for advance resource reservation using the alternate offers protocol, in: Proceedings of the 16th International Workshop on Quality of Service (IWQoS 2008), Twente, The Netherlands, June 2008.Google ScholarGoogle ScholarCross RefCross Ref
  239. K. Vlitalo, Y. Kortesniemi, Privacy in distributed reputation management, in: Workshop of the 1st Int'l Conference on Security and Privacy for Emerging Areas in Communication Networks, September 2005.Google ScholarGoogle Scholar
  240. VMware, Inc., Disaster Recovery Solutions from VMware, White paper, www.vmware.com/, 2007 (accessed 07).Google ScholarGoogle Scholar
  241. VMware, Inc., Migrating Virtual Machines with Zero Downtime, www.vmware.com/, 2010 (accessed 07).Google ScholarGoogle Scholar
  242. VMware, Inc., vSphere, www.vmware.com/products/vsphere/, 2010 (accessed 02.10).Google ScholarGoogle Scholar
  243. L. Vu, M. Hauswirth, K. Aberer, QoS-based service selection and ranking with trust and reputation management, in: Proceedings of the On The Move Conference (OTM '05), LNCS 3760, 2005. Google ScholarGoogle Scholar
  244. W. Voosluys, et al., Cost of VM live migration in clouds: a performance evaluation, in: Proceedings of the First International Conference on Cloud Computing, IOS Press, Netherlands, 2009, pp. 267-295. Google ScholarGoogle Scholar
  245. Y. Wang, J. Vassileva, Toward trust and reputation based web service selection: a survey, J. Multi-agent Grid Syst. (MAGS) (2007).Google ScholarGoogle Scholar
  246. Wikipedia, Cloud computing, http://en.wikipedia.org/wiki/Cloud_computing, 2010 (accessed 26.01.10).Google ScholarGoogle Scholar
  247. Wikipedia, Data center, http://en.wikipedia.org/wiki/Data_center, 2010 (accessed 26.01.10).Google ScholarGoogle Scholar
  248. H. Wu, G. Lu, D. Li, C. Guo, Y. Zhang, MDCube: a high performance network structure for modular data center interconnection, ACM CoNEXT '09, Rome, 1-4 December 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  249. Y. Wu, K. Hwang, Y. Yuan, W. Zheng, Adaptive workload prediction of grid performance in confidence windows, IEEE Trans. Parallel Distrib. Syst. (2010). Google ScholarGoogle Scholar
  250. XEN Organization, www.sen.org, 2011 (accessed 20.02.11).Google ScholarGoogle Scholar
  251. L. Xiong, L. Liu, PeerTrust: supporting reputation-based trust for peer-to-peer electronic communities, IEEE Trans. Knowl. Data Eng. (2004) 843-857. Google ScholarGoogle Scholar
  252. J. Yang, J. Wang, C. Wang, D. Li., A novel scheme for watermarking natural language text, in: Proceedings of the Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2007, pp. 481-484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. L. Youseff, M. Butrico, D. Maria, D. Silva, Toward a unified ontology of cloud computing, in: Grid Computing Environments Workshop (GCE '08), November 2008, pp. 1-10.Google ScholarGoogle Scholar
  254. F. Zhang, J. Cao, K. Hwang, C. Wu, Ordinal optimized scheduling of scientific workflows in elastic compute Clouds, IEEE Trans. Comput. (2011) submitted (under review).Google ScholarGoogle Scholar
  255. R. Zhou, K. Hwang, PowerTrust: a robust and scalable reputation system for trusted peer-to-peer computing, IEEE Trans. Parallel Distrib. Syst. (2007). Google ScholarGoogle Scholar
  256. D. Booth, H. Haas, F. McCabe, et al., Working Group Note 11: Web Services Architecture, www.w3 .org/TR/2004/NOTE-ws-arch-20040211/ (accessed 18.10.10).Google ScholarGoogle Scholar
  257. R. Fielding, Architectural Styles and the Design of Network-Based Software Architectures, University of California at Irvine, 2000, p. 162, http://portal.acm.org/citation.cfm?id=932295. Google ScholarGoogle Scholar
  258. M. Hadley, Web Application Description Language (WADL), W3C Member Submission, www.w3.org/Submission/wadl/, 2009 (accessed 18.10.10).Google ScholarGoogle Scholar
  259. Restlet, the leading RESTful web framework for Java, www.restlet.org/ (accessed 18.10.10).Google ScholarGoogle Scholar
  260. JSR 311-JAX-RS: Java API for RESTful Web Services, https://jsr311.dev.java.net/ (accessed 18.10.10).Google ScholarGoogle Scholar
  261. Jersey open source, production quality, JAX-RS (JSR 311) reference implementation for building RESTful web services, https://jersey.dev.java.net/ (accessed 18.10.10).Google ScholarGoogle Scholar
  262. D. Winer, The XML-RPC specification, www.xmlrpc.com/, 1999 (accessed 18.10.10).Google ScholarGoogle Scholar
  263. L. Richardson, S. Ruby, RESTful Web Services, O'Reilly, 2007. Google ScholarGoogle Scholar
  264. A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Web services security: SOAP message security 1.1 (WS-Security 2004), OASIS Standard Specification, http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf, 2006 (accessed 18.10.10).Google ScholarGoogle Scholar
  265. A. Andrieux, K. Czajkowski, A. Dan, et al., Web services agreement specification (WS-Agreement), OGF Documents, GFD.107, www.ogf.org/documents/GFD.107.pdf, 2007 (accessed 18.10.2010).Google ScholarGoogle Scholar
  266. D. Davis, A. Karmarkar, G. Pilz, S. Winkler, Ü. Yalçinalp, Web services reliable messaging (WS-Reliable-Messaging), OASIS Standard, http://docs.oasis-open.org/ws-rx/wsrm/200702, 2009 (accessed 18.10.2010).Google ScholarGoogle Scholar
  267. M. Little, A. Wilkinson, Web services atomic transaction (WS-AtomicTransaction) Version 1.2, OASIS Standard, http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf, 2009.Google ScholarGoogle Scholar
  268. M. Feingold, R. Jeyaraman, Web services coordination (WS-Coordination) Version 1.2, OASIS Standard, http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf, 2009 (accessed 18.10.2010).Google ScholarGoogle Scholar
  269. K. Chiu, M. Govindaraju, R. Bramley, Investigating the limits of SOAP performance for scientific computing, in: 11th IEEE International Symposium on High Performance Distributed Computing, 2002, pp. 246-254. Google ScholarGoogle ScholarCross RefCross Ref
  270. D. Gannon, G. Fox, Workflow in grid systems, Editorial of special issue of Concurrency & Computation: Practice & Experience, based on GGF10 Berlin meeting, Vol. 18, No. 10, 2006, pp. 1009-1019, doi: http://dx.doi.org/10.1002/cpe.v18:10 and http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf. Google ScholarGoogle Scholar
  271. JBPM Flexible business process management (BPM) suite, www.jboss.org/jbpm (accessed 18.10.10).Google ScholarGoogle Scholar
  272. JBoss enterprise middleware, www.jboss.org/ (accessed 18.10.10).Google ScholarGoogle Scholar
  273. Taverna workflow management system, www.taverna.org.uk/ (accessed 18.10.10).Google ScholarGoogle Scholar
  274. R.V. Englen, K. Gallivan, The gSOAP toolkit for web services and peer-to-peer computing networks, in: 2nd IEEE/ACM International Symposium on Cluster Computing and The Grid (CCGRID '02), 2002. Google ScholarGoogle ScholarCross RefCross Ref
  275. R. Salz, ZSI: The zolera soap infrastructure, http://pywebsvcs.sourceforge.net/zsi.html, 2005 (accessed 18.10.10).Google ScholarGoogle Scholar
  276. J. Edwards, 3-Tier server/client at work, first ed., John Wiley & Sons, 1999.Google ScholarGoogle Scholar
  277. B. Sun, A multi-tier architecture for building RESTful web services, IBM Developer Works 2009, www. ibm.com/developerworks/web/library/wa-aj-multitier/index.html, 2009 (accessed 18.10.2010).Google ScholarGoogle Scholar
  278. G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services: Concepts, Architectures and Applications (Data-Centric Systems and Applications), Springer Verlag, 2010. Google ScholarGoogle Scholar
  279. I. Foster, H. Kishimoto, A. Savva, et al., The open grid services architecture version 1.5, Open Grid Forum, GFD.80, www.ogf.org/documents/GFD.80.pdf, 2006.Google ScholarGoogle Scholar
  280. I. Foster, S. Tuecke, C. Kesselman, The philosophy of the grid, in: 1st International Symposium on Cluster Computing and the Grid (CCGRID0), IEEE Computer Society, 2001.Google ScholarGoogle Scholar
  281. S. Tuecke, K. Czajkowski, I. Foster, et al., Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Forum Proposed Recommendation, GFD15, www.ggf.org/documents/GFD.15.pdf, 2003 (accessed 18.10.10).Google ScholarGoogle Scholar
  282. S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin, Web Services Resource 1.2 (WS-Resource) WSRF, OASIS Standard, http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf, 2006 (accessed 18.10.10).Google ScholarGoogle Scholar
  283. M. Gudgin, M. Hadley, T. Rogers, Web Services Addressing 1.0-Core, W3C Recommendation, 9 May 2006.Google ScholarGoogle Scholar
  284. G. Fox, D. Gannon, A Survey of the Role and Use of Web Services and Service Oriented Architectures in Scientific/Technical Grids, http://grids.ucs.indiana.edu/ptliupages/publications/ReviewofServices and Workflow-IU-Aug2006B.pdf, 2006 (accessed 16.10.10).Google ScholarGoogle Scholar
  285. Supported version of Mule ESB, www.mulesoft.com/.Google ScholarGoogle Scholar
  286. Open source version of Mule ESB, www.mulesoft.org/.Google ScholarGoogle Scholar
  287. IBM's original network software MQSeries rebranded WebSphereMQ in 2002, http://en.wikipedia.org/wiki/IBM_WebSphere_MQ.Google ScholarGoogle Scholar
  288. WebSphereMQ IBM network software, http://en.wikipedia.org/wiki/IBM_WebSphere_MQ.Google ScholarGoogle Scholar
  289. H. Shen, Content-based publish/subscribe systems, in: X. Shen, et al., (Eds.), Handbook of Peer-to-Peer Networking, Springer Science+Business Media, LLC, 2010, pp. 1333-1366.Google ScholarGoogle ScholarCross RefCross Ref
  290. Java Message Service JMS API, www.oracle.com/technetwork/java/index-jsp-142945.html and http://en .wikipedia.org/wiki/Java_Message_Service.Google ScholarGoogle Scholar
  291. AQMP Open standard for messaging middleware, www.amqp.org/confluence/display/AMQP/Advanced+ Message+Queuing+Protocol.Google ScholarGoogle Scholar
  292. Mule MQ open source enterprise-class Java Message Service (JMS) implementation, www.mulesoft.org/documentation/display/MQ/Home.Google ScholarGoogle Scholar
  293. Apache ActiveMQ open source messaging system, http://activemq.apache.org/.Google ScholarGoogle Scholar
  294. NaradaBrokering open source content distribution infrastructure, www.naradabrokering.org/.Google ScholarGoogle Scholar
  295. RabbitMQ open source Enterprise Messaging System, www.rabbitmq.com/.Google ScholarGoogle Scholar
  296. Amazon Simple Queue Service (Amazon SQS), http://aws.amazon.com/sqs/.Google ScholarGoogle Scholar
  297. Microsoft Azure Queues, http://msdn.microsoft.com/en-us/windowsazure/ff635854.aspx.Google ScholarGoogle Scholar
  298. N. Wilkins-Diehr, Special issue: Science gateways-common community interfaces to grid resources, Concurr. Comput. Pract. Exper. 19 (6) (2007) 743-749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  299. N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, S. Pamidighantam, TeraGrid science gateways and their impact on science, Computer 41 (11) (2008). Google ScholarGoogle Scholar
  300. Y. Liu, S. Wang, N. Wilkins-Diehr, SimpleGrid 2.0: A learning and development toolkit for building highly usable TeraGrid science gateways, in: SC-GCE, 2009. Google ScholarGoogle Scholar
  301. D.A. Reed, Grids, the TeraGrid and beyond, IEEE Comput. 36 (1) (2003) 62-68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  302. R. Pordes, D. Petravick, B. Kramer, et al., The open science grid, J. Phys. Conf. Ser. 78 (2007) 012057.Google ScholarGoogle ScholarCross RefCross Ref
  303. I. Foster, Globus toolkit version 4: software for service-oriented systems, J. Comput. Sci. Technol. 21 (4) (2006) 513-520.Google ScholarGoogle Scholar
  304. D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the condor experience, Concurr. Pract. Exper. 17 (2-4) (2005) 323-356. Google ScholarGoogle ScholarCross RefCross Ref
  305. IRODS: Data Grids, Digital Libraries, Persistent Archives, and Real-time Data Systems, https://www .irods.org (accessed 29.08.10).Google ScholarGoogle Scholar
  306. J. Basney, M. Humphrey, V. Welch, The MyProxy online credential repository, Softw. Pract. Exp. 35 (9) (2005) 801-816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  307. J.V. Welch, J. Basney, D. Marcusiu, N. Wilkins-Diehr, A AAAA model to support science gateways with community accounts, Concurr. Comput. Pract. Exper., (2006) 893-904. Google ScholarGoogle Scholar
  308. L. Liming, et al., TeraGrid's integrated information service, in: 5th Grid Computing Environments Workshop, ACM, 2009. Google ScholarGoogle Scholar
  309. J. Kim, P.V. Sudhakar, Computational Chemistry Grid, a Production Cyber-environment through Distributed Computing: Recent Enhancements and Application for DFT Calculation of Amide I Spectra of Amyloid-Fibril. PRAGMA13, Urbana, IL, 2007.Google ScholarGoogle Scholar
  310. R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam, G. Allen, From proposal to production: lessons learned developing the computational chemistry grid cyberinfrastructure, J. Grid Comput. 4 (2) (2006) 195-208.Google ScholarGoogle ScholarCross RefCross Ref
  311. GridChem-Related Scientific Publications, https://www.gridchem.org/papers.Google ScholarGoogle Scholar
  312. B. Demeler, UltraScan: A comprehensive data analysis software package for analytical ultracentrifugation experiments, in: Analytical Ultracentrifugation:Techniques and Methods, 2005, pp. 210-229.Google ScholarGoogle Scholar
  313. UltraScan Gateway, http://uslims.uthscsa.edu/.Google ScholarGoogle Scholar
  314. UltraScan publications database, www.ultrascan.uthscsa.edu/search-refs.html.Google ScholarGoogle Scholar
  315. E.H. Brookes, R.V. Boppana, B. Demeler, Biology-Computing large sparse multivariate optimization problems with an application in biophysics, in: ACM/IEEE Conference on Supercomputing (SC2006), Tampa FL, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  316. E.H. Brookes, B. Demeler, Parsimonious regularization using genetic algorithms applied to the analysis of analytical ultracentrifugation experiments, in: 9th Annual Conference on Genetic and Evolutionary Computation (GECCO), London, 2007, pp. 361-368. Google ScholarGoogle ScholarCross RefCross Ref
  317. G. Klimeck, M. McLennan, S.P. Brophy, et al., nanoHUB.org: Advancing education and research in nanotechnology, Comput. Sci. Eng. 10 (5) (2008) 17-23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  318. A. Strachan, G. Klimeck, M.S. Lundstrom, Cyber-enabled simulations in nanoscale science and engineering, Comput. Sci. Eng. 12 (2010) 12-17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  319. H. Abelson, The creation of OpenCourseWare at MIT, J. Sci. Educ. Technol. 17 (2) (2007) 164-174.Google ScholarGoogle ScholarCross RefCross Ref
  320. T. J. Hacker, R. Eigenmann, S. Bagchi, A. Irfanoglu, S. Pujol, A. Catlin, Ellen Rathje, The NEEShub cyberinfrastructure for earthquake engineering, computing, in Science and Engineering, 13 (4) (2011) 67-78, doi:10.1109/MCSE.2011.70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  321. T. Richardson, Q. Stafford-Fraser, K.R. Wood, A. Hopper, Virtual network computing, IEEE Internet Comput. 2 (1) (1998) 33-38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  322. P.M. Smith, T.J. Hacker, C.X. Song, Implementing an industrial-strength academic cyberinfrastructure at Purdue University, in: IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2008.Google ScholarGoogle Scholar
  323. W. Qiao, M. McLennan, R. Kennell, D. Ebert, G. Klimeck, Hub-based simulation and graphics hardware accelerated visualization for nanotechnology applications, IEEE Trans. Vis. Comput. Graph. 12 (2006) 1061-1068. Google ScholarGoogle ScholarDigital LibraryDigital Library
  324. G. Klimeck, M. Luisier, Atomistic modeling of realistically extended semiconductor devices with NEMO/OMEN, IEEE Comput. Sci. Eng. 12 (2010) 28-35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  325. B.P. Haley, G. Klimeck, M. Luisier, et al., Computational nanoelectronics research and education at nanoHUB.org, J. Comput. Electron. 8 (2009) 124-131.Google ScholarGoogle ScholarCross RefCross Ref
  326. OpenVZ web site, http://openvz.org (accessed 17.08.10).Google ScholarGoogle Scholar
  327. J. Alameda, M. Christie, G. Fox, et al., The open grid computing environments collaboration: portlets and services for science gateways, Concurr. Comput. Pract. Exper. 19 (6) (2007) 921-942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  328. Open Grid Computing Environments web site, www.collab-ogce.org (accessed 18.10.10).Google ScholarGoogle Scholar
  329. Z. Guo, R. Singh, M.E. Pierce, Building the PolarGrid portal using Web 2.0 and OpenSocial, in: SC-GCE, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  330. T. Gunarathne, C. Herath, E. Chinthaka, S. Marru, Experience with adapting a WS-BPEL runtime for eScience workflows, in: 5th Grid Computing Environments Workshop, ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  331. S. Marru, S. Perera, M. Feller, S. Martin, Reliable and Scalable Job Submission: LEAD Science Gateways Testing and Experiences with WS GRAM on TeraGrid Resources, in: TeraGrid Conference, 2008.Google ScholarGoogle Scholar
  332. S. Perera, S. Marru, T. Gunarathne, D. Gannon, B. Plale, Application of management frameworks to manage workflow-based systems: A case study on a large scale e-science project, in: IEEE International Conference on Web Services, 2009. Google ScholarGoogle Scholar
  333. S. Perera, S. Marru, C. Herath, Workflow Infrastructure for Multi-scale Science Gateways, in: TeraGird Conference, 2008.Google ScholarGoogle Scholar
  334. T. Andrews, F. Curbera, H. Dholakia, et al., Business process execution language for web services, version 1.1, 2003.Google ScholarGoogle Scholar
  335. T. Oinn, M. Addis, J. Ferris, et al., Taverna: a tool for the composition and enactment of bioinformatics workflows, Bioinformatics, (2004). Google ScholarGoogle Scholar
  336. E. Deelman, J. Blythe, Y. Gil, et al., Pegasus: Mapping scientific workflows onto the grid, in: Grid Computing, Springer, 2004.Google ScholarGoogle Scholar
  337. Apache ODE (Orchestration Director Engine) open source BPEL execution engine, http://ode.apache.org/.Google ScholarGoogle Scholar
  338. M. Christie, S. Marru, The LEAD Portal: a TeraGrid gateway and application service architecture, Concurr. Comput. Pract. Exper. 19 (6) (2007) 767-781. Google ScholarGoogle ScholarDigital LibraryDigital Library
  339. UDDI Version 3 Specification, OASIS Standard, OASIS UDDI Specifications TC-Committee Specifications, www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3, 2005 (accessed 18.10.10).Google ScholarGoogle Scholar
  340. Programmable Web site for contributed service APIs and mashups, www.programmableweb.com/ (accessed 18.10.10).Google ScholarGoogle Scholar
  341. J. Gregorio, B. de hOra, RFC 5023-The Atom Publishing Protocol, IETF Request for Comments, http://tools.ietf.org/html/rfc5023, 2007 (accessed 18.10.10).Google ScholarGoogle Scholar
  342. L. Vargas, J. Bacon, Integrating Databases with Publish/Subscribe, in: 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW '05), 2005. Google ScholarGoogle Scholar
  343. M. Aktas, Thesis. Information Federation in Grid Information Services. Indiana University, http://grids .ucs.indiana.edu/ptliupages/publications/MehmetAktasThesis.pdf, 2007. Google ScholarGoogle Scholar
  344. M.S. Aktas, G.C. Fox, M. Pierce, A federated approach to information management in grids, J. Web Serv. Res. 7 (1) (2010) 65-98, http://grids.ucs.indiana.edu/ptliupages/publications/JWSR-PaperRevisedSubmission529- Proofread.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  345. M.S. Aktas, M. Pierce, High-performance hybrid information service architecture, Concurr. Comput. Pract. Exper. 22 (15) (2010) 2095-2123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  346. E. Deelman, G. Singh, M.P. Atkinson, et al., Grid based metadata services, in: 16th International Conference on Scientific and Statistical Database Management (SSDBM '04), Santorini, Greece, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  347. C.K. Baru, The SDSC Storage Resource Broker, in: I. Press, (Ed.), CASCON '98 Conference, Toronto, 1998. Google ScholarGoogle Scholar
  348. G. Singh, S. Bharathi, A. Chervenak, et al., A Metadata Catalog Service for Data Intensive Applications, in: 2003 ACM/IEEE Conference on Supercomputing, Conference on High Performance Networking and Computing, ACM Press, 15-21 November 2003, p. 17. Google ScholarGoogle Scholar
  349. L. Chervenak, et al., Performance and Scalability of a Replica Location Service, in: 13th IEEE International Symposium on High Performance Distributed Computing (HPDC 13), IEEE Computer Society, Washington, DC, 2004, pp. 182-191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  350. B. Koblitz, N. Santos, V. Pose, The AMGA metadata service, J. Grid Comput. 6 (1) (2007) 61-76.Google ScholarGoogle ScholarCross RefCross Ref
  351. C.A. Goble, D. De Roure, The Semantic Grid: Myth busting and bridge building, in: 16th European Conference on Artificial Intelligence (ECAI-2004), Valencia, Spain, 2004.Google ScholarGoogle Scholar
  352. O. Corcho, et al., An Overview of S-OGSA: A Reference Semantic Grid Architecture, in: Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 2006, pp. 102-115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  353. MyGrid, www.mygrid.org.uk/.Google ScholarGoogle Scholar
  354. J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in: Sixth Symposium on Operating Systems Design and Implementation, 2004, pp. 137-150. Google ScholarGoogle Scholar
  355. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks, in: ACM SIGOPS Operating Systems Review, ACM Press, Lisbon, Portugal, 2007. Google ScholarGoogle Scholar
  356. S. Ghemawat, The Google File System, in: 19th ACM Symposium on Operating System Principles, 2003, pp. 20-43. Google ScholarGoogle Scholar
  357. D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the Condor experience, Concurr. Comput. Pract. Exper. 17 (2-4) (2005) 323-356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  358. D. Gelernter, Generative communication in Linda, in: ACM Transactions on Programming Languages and Systems, 1985, pp. 80-112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  359. E. Freeman, S. Hupfer, K. Arnold, JavaSpaces: Principles, Patterns, and Practice, Addison-Wesley, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  360. F. Chang, et al., BigTable: A Distributed Storage System for Structured Data, in: OSDI 2006, Seattle, pp. 205-218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  361. G. De Candia, et al., Dynamo: Amazon's highly available key-value store, in: SOSP, Stevenson, WA, pp. 205-219.Google ScholarGoogle Scholar
  362. R. Van Renesse, K. Birman, W. Vogels, Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining, in: ACM Transactions on Computer Systems, 2003, pp. 164-206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  363. J. Yu, R. Buyya, A taxonomy of workflow management systems for grid computing, in: Technical Report, GRIDS-TR-2005-1, Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  364. I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields, Workflows for e-Science: Scientific Workflows for Grids, Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  365. Z. Zhao, A. Belloum, M. Bubak, Editorial: Special section on workflow systems and applications in e-Science, Future Generation Comp. Syst. 25 (5) (2009) 525-527, http://dx.doi.org/10.1016/j.future.2008.10.011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  366. E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-Science: an overview of workflow system features and capabilities, Future Generation Comp. Syst. 25 (5) (2009) 528-540, doi: http://dx.doi .org/10.1016/j.future.2008.06.012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  367. Workflow Management Consortium, www.wfmc.org/.Google ScholarGoogle Scholar
  368. R. Allen, Workflow: An Introduction, Workflow Handbook. Workflow Management Coalition, 2001.Google ScholarGoogle Scholar
  369. N. Carriero, D. Gelernter, Linda in context, Commun. ACM 32 (4) (1989) 444-458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  370. A. Beguelin, J. Dongarra, G.A. Geist, HeNCE: A User's Guide, Version 2.0, www.netlib.org/hence/hence-2.0-doc-html/hence-2.0-doc.html.Google ScholarGoogle Scholar
  371. C. Upson, T. Faulhaber Jr., D.H. Laidlaw, et al., The application visualization system: a computational environment for scientific visualization, IEEE Comput. Graph. Appl., (1989) 30-42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  372. J. Rasure, S. Kubica, The Khoros application development environment, in: Khoral Research Inc., Albuquerque, New Mexico, 1992.Google ScholarGoogle Scholar
  373. A. Hoheisel, User tools and languages for graph-based Grid workflows, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1101-1113, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  374. Z. Guan, F. Hernandez, P. Bangalore, et al., Grid-Flow: A Grid-enabled scientific workflow system with a Petri-net-based interface, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1115-1140, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  375. M. Kosiedowski, K. Kurowski, C. Mazurek, J. Nabrzyski, J. Pukacki, Workflow applications in GridLab and PROGRESS projects, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1141-1154, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  376. LabVIEW Laboratory Virtual Instrumentation Engineering Workbench, http://en.wikipedia.org/wiki/LabVIEW.Google ScholarGoogle Scholar
  377. LabSoft LIMS laboratory information management system, www.labsoftlims.com/.Google ScholarGoogle Scholar
  378. LIMSource Internet LIMS resource, http://limsource.com/home.html.Google ScholarGoogle Scholar
  379. InforSense Business Intelligence platform, hwww.inforsense.com/products/core_technology/inforsense_ platform/index.html.Google ScholarGoogle Scholar
  380. Pipeline Pilot scientific informatics platform from Accelrys, http://accelrys.com/products/pipeline-pilot/.Google ScholarGoogle Scholar
  381. OASIS Web Services Business Process Execution Language Version 2.0 BPEL, http://docs.oasis-open .org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.Google ScholarGoogle Scholar
  382. F. Curbera, R. Khalaf, W.A. Nagy, S. Weerawarana, Implementing BPEL4WS: The architecture of a BPEL4WS implementation, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1219-1228, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  383. ActiveBPEL Open Source workflow engine, www.activebpel.org/.Google ScholarGoogle Scholar
  384. F. Leyman, Choreography for the Grid: Towards fitting BPEL to the resource framework, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1201-1217, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarCross RefCross Ref
  385. R. Barga, D. Guo, J. Jackson, N. Araujo, Trident: a scientific workflow workbench, in: Tutorial eScience Conference, Indianapolis, 2008. Google ScholarGoogle Scholar
  386. Microsoft, Project Trident: A Scientific Workflow Workbench, http://tridentworkflow.codeplex.com/and http://research.microsoft.com/en-us/collaboration/tools/trident.aspx.Google ScholarGoogle Scholar
  387. The forecast before the storm. [iSGTW International Science Grid This Week], www.isgtw.org/? pid=1002719, 2010.Google ScholarGoogle Scholar
  388. C. Goble, Curating services and workflows: the good, the bad and the ugly, a personal story in the small, in: European Conference on Research and Advanced Technology for Digital Libraries, 2008.Google ScholarGoogle Scholar
  389. Linked Environments for Atmospheric Discovery II (LEAD II), http://pti.iu.edu/d2i/leadII-home.Google ScholarGoogle Scholar
  390. XBaya workflow composition tool, www.collab-ogce.org/ogce/index.php/XBaya.Google ScholarGoogle Scholar
  391. XBaya integration with OGCE Open Grid Computing Environments Portal, www.collab-ogce.org/ogce/index.php/XBaya.Google ScholarGoogle Scholar
  392. V. Bhat, M. Parashar, Discover middleware substrate for integrating services on the grid, in: Proceedings of the 10th International Conference on High Performance Computing (HiPC 2003), Lecture Notes in Computer Science. Springer-Verlag, Hyderabad, India, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  393. Z. Zhao, A. Belloum, C.D. Laat, P. Adriaans, B. Hertzberger, Distributed execution of aggregated multidomain workflows using an agent framework, in: IEEE Congress on Services (Services 2007), 2007.Google ScholarGoogle ScholarCross RefCross Ref
  394. Open source scripting workflow supporting the many task execution paradigm, www.ci.uchicago.edu/swift/.Google ScholarGoogle Scholar
  395. L. Ramakrishnan, B. Plale, A multi-dimensional classification model for scientific workflow characteristics, in: 1st International Workshop on Workflow Approaches to New Data-Centric Science, Indianapolis, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  396. Kepler Open Source Scientific Workflow System, http://kepler-project.org.Google ScholarGoogle Scholar
  397. B. Ludäscher, I. Altintas, C. Berkley, et al., Scientific workflow management and the Kepler system, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1039-1065, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  398. T. McPhillips, S. Bowers, D. Zinn, B. Ludäscher, Scientific workflow design for mere mortals, Future Generation Comp. Syst. 25 (5) (2009) 541-551, http://dx.doi.org/10.1016/j.future.2008.06.013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  399. Triana, Triana Open Source Problem Solving Environment, www.trianacode.org/index.html (accessed 18.10.10).Google ScholarGoogle Scholar
  400. I. Taylor, M. Shields, I. Wang, A. Harrison, in: I. Taylor, et al., (Eds.), Workflows for e-Science, Springer, 2007, pp. 320-339.Google ScholarGoogle ScholarCross RefCross Ref
  401. D. Churches, G. Gombas, A. Harrison, et al., Programming scientific and distributed workflow with Triana services, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1021-1037, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  402. Pegasus Workflow Management System, http://pegasus.isi.edu/.Google ScholarGoogle Scholar
  403. T. Oinn, M. Greenwood, M. Addis, et al., Taverna: Lessons in creating a workflow environment for the life sciences, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1067-1100, http://dx.doi.org/10.1002/cpe .v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  404. myGrid multi-institutional, multi-disciplinary research group focusing on the challenges of eScience, www.mygrid.org.uk/.Google ScholarGoogle Scholar
  405. OMII UK Software Solutions for e-Research, www.omii.ac.uk/index.jhtml.Google ScholarGoogle Scholar
  406. Collaborative workflow social networking site, www.myexperiment.org/.Google ScholarGoogle Scholar
  407. H. Gadgil, G. Fox, S. Pallickara, M. Pierce, Managing grid messaging middleware, in: Challenges of Large Applications in Distributed Environments (CLADE), 2006, pp. 83-91.Google ScholarGoogle Scholar
  408. HPSearch, Scripting environment for managing streaming workflow and their messaging based communication, www.hpsearch.org/, 2005 (accessed 18.10.10).Google ScholarGoogle Scholar
  409. C. Herath, B. Plale, Streamflow, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 2010.Google ScholarGoogle Scholar
  410. Many Task Computing Paradigm, http://en.wikipedia.org/wiki/Many-task_computing.Google ScholarGoogle Scholar
  411. D. Bhatia, V. Burzevski, M. Camuseva, et al., WebFlow: A visual programming paradigm for web/Java based coarse grain distributed computing, Concurr. Comput. Pract. Exper. 9 (6) (1997) 555-577.Google ScholarGoogle ScholarCross RefCross Ref
  412. IBM WebSphere sMash Web 2.0 Workflow system, IBM DeveloperWorks, www.ibm.com/developerworks/websphere/zones/smash/ (accessed 19.10.10).Google ScholarGoogle Scholar
  413. Common Component Architecture CCA Forum, www.cca-forum.org/.Google ScholarGoogle Scholar
  414. D. Gannon, S. Krishnan, L. Fang, et al., On building parallel & grid applications: component technology and distributed services, Cluster Comput. 8 (4) (2005) 271-277, http://dx.doi.org/10.1007/s10586-005-4094-2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  415. E. Deelman, T. Kosar, C. Kesselman, M. Livny, What makes workflows work in an opportunistic environment? Concurr. Comput. Pract. Exper. 18 (10) (2006), http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle Scholar
  416. Condor home page, www.cs.wisc.edu/condor/.Google ScholarGoogle Scholar
  417. Karajan parallel scripting language, http://wiki.cogkit.org/index.php/Karajan.Google ScholarGoogle Scholar
  418. GridAnt extension of the Apache Ant build tool residing in the Globus COG kit, www.gridworkflow.org/snips/gridworkflow/space/GridAnt.Google ScholarGoogle Scholar
  419. H. Chivers, J. McDermid, Refactoring service-based systems: How to avoid trusting a workflow service, Concurr. Comput. Pract. Exper. 18 (10) (2006) 1255-1275, http://dx.doi.org/10.1002/cpe.v18:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  420. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More, Prentice Hall, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  421. M. Atkinson, D. DeRoure, A. Dunlop, et al., Web Service Grids: An evolutionary approach, Concurr. Comput. Pract. Exper. 17 (2005) 377-389, http://dx.doi.org/10.1002/cpe.936. Google ScholarGoogle ScholarDigital LibraryDigital Library
  422. T. Segaran, C. Evans, J. Taylor, Programming the Semantic Web, O'Reilly, 2009. Google ScholarGoogle Scholar
  423. G. Fox, Data and metadata on the semantic grid, Comput. Sci. Eng. 5 (5) (2003) 76-78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  424. H. Gonzalez, A. Halevy, C.S. Jensen, et al., Google fusion tables: Data management, integration and collaboration in the cloud. International Conference on Management of Data, in: Proceedings of the 1st ACM Symposium on Cloud Computing, ACM, Indianapolis, 2010, pp. 175-180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  425. C. Dabrowski, Reliability in grid computing systems, Concurr. Comput. Pract. Exper. 21 (8) (2009) 927-959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  426. Microsoft, Project Trident: A Scientific Workflow Workbench, http://research.microsoft.com/en-us/collaboration/tools/trident.aspx, 2010.Google ScholarGoogle Scholar
  427. W. Lu, J. Jackson, R. Barga, AzureBlast: A case study of developing science applications on the cloud, in: ScienceCloud: 1st Workshop on Scientific Cloud Computing co-located with HPDC (High Performance Distributed Computing), ACM, Chicago, IL, 21 June 2010. Google ScholarGoogle Scholar
  428. Distributed Systems Laboratory (DSL) at University of Chicago Wiki. Performance Comparison: Remote Usage, NFS, S3-fuse, EBS. 2010.Google ScholarGoogle Scholar
  429. D. Jensen, Blog entry on Compare Amazon S3 to EBS data read performance, http://jensendarren .wordpress.com/2009/12/30/compare-amazon-s3-to-ebs-data-read-performance/, 2009.Google ScholarGoogle Scholar
  430. Zend PHP Company, The Simple Cloud API for Storage, Queues and Table, http://www.simplecloud.org/home, 2010.Google ScholarGoogle Scholar
  431. Microsoft, Windows Azure Geo-location Live, http://blogs.msdn.com/b/windowsazure/archive/2009/04/30/windows-azure-geo-location-live.aspx, 2009.Google ScholarGoogle Scholar
  432. Raytheon BBN, SHARD (Scalable, High-Performance, Robust and Distributed) Triple Store based on Hadoop. http://www.cloudera.com/blog/2010/03/how-raytheon-researchers-are-using-hadoop-to-build-ascalable-distributed-triple-store/, 2010.Google ScholarGoogle Scholar
  433. NOSQL Movement, Wikipedia list of resources, http://en.wikipedia.org/wiki/NoSQL, 2010.Google ScholarGoogle Scholar
  434. NOSQL Link Archive, LIST OF NOSQL DATABASES, http://nosql-database.org/, 2010.Google ScholarGoogle Scholar
  435. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D. Wallach, M. Burrows, et al., BigTable: A distributed storage system for structured data, in: OSDI'06: Seventh Symposium on Operating System Design and Implementation, USENIX, Seattle, WA, 2006. Google ScholarGoogle Scholar
  436. Amazon, Welcome to Amazon SimpleDB, http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/index.html, 2010.Google ScholarGoogle Scholar
  437. J. Haridas, N. Nilakantan, B. Calder, Windows Azure Table, http://go.microsoft.com/fwlink/?LinkId=153401, 2009.Google ScholarGoogle Scholar
  438. International Virtual Observatory Alliance, VOTable Format Definition Version 1.1, http://www.ivoa.net/Documents/VOTable/20040811/, 2004.Google ScholarGoogle Scholar
  439. Apache Incubator, Heart (Highly Extensible & Accumulative RDF Table) planet-scale RDF data store and a distributed processing engine based on Hadoop & Hbase, http://wiki.apache.org/incubator/HeartProposal, 2010.Google ScholarGoogle Scholar
  440. M. King, Amazon SimpleDB and CouchDB Compared, http://www.automatthew.com/2007/12/amazon-simpledb-and-couchdb-compared.html, 2007.Google ScholarGoogle Scholar
  441. Apache, Hbase implementation of BigTable on Hadoop File System, http://hbase.apache.org/, 2010.Google ScholarGoogle Scholar
  442. Apache, The CouchDB document-oriented database project, http://couchdb.apache.org/index.html, 2010.Google ScholarGoogle Scholar
  443. M/Gateway Developments Ltd, M/DB Open Source "plug-compatible" alternative to Amazon's SimpleDB database, http://gradvs1.mgateway.com/main/index.html?path=mdb, 2009.Google ScholarGoogle Scholar
  444. ActiveMQ, http://activemq.apache.org/, 2009.Google ScholarGoogle Scholar
  445. S. Pallickara, G. Fox, NaradaBrokering: a distributed middleware framework and architecture for enabling durable peer-to-peer grids, in: ACM/IFIP/USENIX 2003 International Conference on Middleware, Rio de Janeiro, Brazil, Springer-Verlag, New York, Inc., 2003. Google ScholarGoogle ScholarCross RefCross Ref
  446. NaradaBrokering, Scalable Publish Subscribe System, http://www.naradabrokering.org/, 2010.Google ScholarGoogle Scholar
  447. Apache Hadoop, http://hadoop.apache.org/, 2009.Google ScholarGoogle Scholar
  448. J. Ekanayake, A.S. Balkir, T. Gunarathne, G. Fox, C. Poulain, N. Araujo, et al., DryadLINQ for scientific analyses, in: Fifth IEEE International Conference on eScience, Oxford, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  449. J. Ekanayake, T. Gunarathne, J. Qiu, G. Fox, S. Beason, J.Y. Choi, et al., Applicability of DryadLINQ to Scientific Applications, Community Grids Laboratory, Indiana University, 2009.Google ScholarGoogle Scholar
  450. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed data-parallel programs from sequential building blocks, in: ACM SIGOPS Operating Systems Review, ACM Press, 2007. Google ScholarGoogle Scholar
  451. Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda, et al., DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language, in: Symposium on Operating System Design and Implementation (OSDI), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  452. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107-113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  453. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, et al., Twister: a runtime for iterative MapReduce, in: Proceedings of the First International Workshop on MapReduce and Its Applications of ACM HPDC 2010 conference, ACM, Chicago, IL, 20-25 June 2010. Google ScholarGoogle Scholar
  454. T. Gunarathne, T. Wu, J. Qiu, G. Fox, MapReduce in the Clouds for Science, in: CloudCom, IUPUI Conference Center, Indianapolis, 30 November-3 December 2010. Google ScholarGoogle Scholar
  455. R.S. Dorward, R. Griesemer, S. Quinlan, Interpreting the data: parallel analysis with Sawzall, Scientific Prog. J. 13 (4) (2005) 227-298 (Special Issue on Grids and Worldwide Computing Programming Models and Infrastructure). Google ScholarGoogle Scholar
  456. Pig! Platform for analyzing large data sets, http://hadoop.apache.org/pig/, 2010.Google ScholarGoogle Scholar
  457. C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: a not-so-foreign language for data processing, in: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, ACM, Vancouver, Canada, 2008, pp. 1099-1110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  458. G. Malewicz, M.H. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, et al., Pregel: a system for large-scale graph processing, in: Proceedings of the twenty-first annual symposium on parallelism in algorithms and architectures, ACM, Calgary, Canada, 2009, p. 48. Google ScholarGoogle Scholar
  459. Cloudera, CDH: A free, stable Hadoop distribution offering RPM, Debian, AWS and automatic configuration options. http://www.cloudera.com/hadoop/, 2010.Google ScholarGoogle Scholar
  460. A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, second ed., Addison Wesley, 2003.Google ScholarGoogle Scholar
  461. J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in: Sixth Symposium on Operating Systems Design and Implementation, 2004, pp. 137-150. Google ScholarGoogle Scholar
  462. H. Kasim, V. March, R. Zhang, S. See, Survey on Parallel Programming Model, in: IFIP International Conference on Network and Parallel Computing, Lecture Notes in Computer Science, Vol. 5245, Springer-Verlag, Shanghai, China, 2008, pp. 266-275. Google ScholarGoogle Scholar
  463. S. Hariri, M. Parashar, Tools and Environments for Parallel and Distributed Computing, Series on Parallel and Distributed Computing, Wiley, 2004, ISBN:978-0471332886. Google ScholarGoogle Scholar
  464. L. Silva, R. Buyya, Parallel Programming Models and Paradigms, (2007).Google ScholarGoogle Scholar
  465. T. Gunarathne, T. Wu, J. Qiu, G. Fox, Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications, in: Proceedings of the Emerging Computational Methods for the Life Sciences Workshop of ACM HPDC 2010 conference, Chicago, IL, 20-25 June 2010. Google ScholarGoogle Scholar
  466. G. Fox, MPI and MapReduce, in: Clusters, Clouds, and Grids for Scientific Computing CCGSC, Flat Rock, NC, http://grids.ucs.indiana.edu/ptliupages/presentations/CCGSC-Sept8-2010.pptx, 8 September 2010.Google ScholarGoogle Scholar
  467. J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, G. Fox, High Performance Parallel Computing with Clouds and Cloud Technologies, Cloud Computing and Software Services: Theory and Techniques, CRC Press (Taylor and Francis), 2010.Google ScholarGoogle Scholar
  468. T. Hoefler, A. Lumsdaine, J. Dongarra, Towards Efficient MapReduce Using MPI, in: Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer Science: vol. 5759, Springer Verlag, Espoo Finland, 2009, pp. 240-249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  469. S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, L. Qi, CLOUDLET: towards mapreduce implementation on virtual machines, in: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, ACM, Garching, Germany, 2009, pp. 65-66. Google ScholarGoogle Scholar
  470. T. Sandholm, K. Lai, MapReduce optimization using regulated dynamic prioritization, in: Proceedings of the eleventh international joint conference on measurement and modeling of computer systems, ACM, Seattle, WA, 2009, pp. 299-310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  471. Wikipedia, MapReduce, http://en.wikipedia.org/wiki/MapReduce, 2010 (accessed 06.11.10).Google ScholarGoogle Scholar
  472. J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in: Presentation at OSDI-2004 Conference. http://labs.google.com/papers/mapreduce-osdi04-slides/index.html, 2004 (accessed 6.11.10). Google ScholarGoogle Scholar
  473. R. Lammel, Google's MapReduce programming model-Revisited, Sci. Comput. Prog. 68 (3) (2007) 208-237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  474. M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica, Improving MapReduce performance in heterogeneous environments, in: Proceedings of the 8th USENIX conference on operating systems design and implementation, USENIX Association, San Diego, California, 2008, pp. 29-42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  475. N. Vasic, M. Barisits, V. Salzgeber, D. Kostic, Making cluster applications energy-aware, in: Proceedings of the 1st workshop on automated control for datacenters and clouds, ACM, Barcelona, Spain, 2009, pp. 37-42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  476. D.J. DeWitt, E. Paulson, E. Robinson, J. Naughton, J. Royalty, S. Shankar, et al., Clustera: an integrated computation and data management system, in: Proc. VLDB Endow, 2008, 1(1), pp. 28-41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  477. S. Ghemawat, H. Gobioff, S. Leung, The Google File System, in: 19th ACM Symposium on Operating Systems Principles, 2003, pp. 20-43. Google ScholarGoogle Scholar
  478. Google, Introduction to Parallel Programming and MapReduce, http://code.google.com/edu/parallel/mapreduce-tutorial.html, 2010.Google ScholarGoogle Scholar
  479. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, et al., Twister: a runtime for iterative MapReduce, in: Proceedings of the First International Workshop on MapReduce and Its Applications of ACM HPDC 2010 Conference, ACM, Chicago, IL, 20-25 June 2010. Google ScholarGoogle Scholar
  480. B. Zhang, Y. Ruan, T. Wu, J. Qiu, A. Hughes, G. Fox, Applying Twister to Scientific Applications, in: CloudCom 2010, IUPUI Conference Center, Indianapolis, 30 November-3 December 2010. Google ScholarGoogle Scholar
  481. G. Malewicz, M.H. Austern, A. Bik, J.C. Dehnert, I. Horn, N. Leiser, et al., Pregel: A System for Large-Scale Graph Processing, in: International conference on management of data, Indianapolis, Indiana, 2010, pp. 135-146. Google ScholarGoogle Scholar
  482. Y. Bu, B. Howe, M. Balazinska, M.D. Ernst, HaLoop: Efficient Iterative Data Processing on Large Clusters, in: The 36th International Conference on Very Large Data Bases, VLDB Endowment, Vol. 3, Singapore, 13-17 September 2010. Google ScholarGoogle Scholar
  483. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster Computing with Working Sets, in: 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud '10), Boston, 22 June 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  484. SALSA Group, Iterative MapReduce, http://www.iterativemapreduce.org/, 2010.Google ScholarGoogle Scholar
  485. Yahoo, Yahoo! Hadoop Tutorial, http://developer.yahoo.com/hadoop/tutorial/index.html, 2010.Google ScholarGoogle Scholar
  486. G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and Design. International Computer Science Series, 4th ed., Addison-Wesley, 2004. Google ScholarGoogle Scholar
  487. T. White, Hadoop: The Definitive Guide, Second ed., Yahoo Press, 2010. Google ScholarGoogle Scholar
  488. Apache, HDFS Overview, http://hadoop.apache.org/hdfs/, 2010.Google ScholarGoogle Scholar
  489. Apache, Hadoop MapReduce, http://hadoop.apache.org/mapreduce/docs/current/index.html, 2010.Google ScholarGoogle Scholar
  490. J. Venner, Pro Hadoop, first ed., Apress, 2009, ISBN:978-1430219422. Google ScholarGoogle Scholar
  491. Apache! Pig! (part of Hadoop), http://pig.apache.org/, 2010.Google ScholarGoogle Scholar
  492. A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, et al., Unified compilation of Fortran 77D and 90D, ACM Lett. Program. Lang. Syst. 2 (1-4) (1993) 95-114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  493. Yahoo, Pig! Tutorial. http://developer.yahoo.com/hadoop/tutorial/module6.html#pig.Google ScholarGoogle Scholar
  494. Systems@ETH Zurich, Massively Parallel Data Analysis with MapReduce. Lectures on MapReduce, Hadoop and Pig Latin. http://www.systems.ethz.ch/education/past-courses/hs08/map-reduce/map-reduce/lecture-slides, 2008 (accessed 07.11.10).Google ScholarGoogle Scholar
  495. G. Fox, R.D. Williams, P.C. Messina, Parallel computing works! Morgan Kaufmann Publishers, 1994.Google ScholarGoogle Scholar
  496. J. Ekanayake, T. Gunarathne, J. Qiu, G. Fox, S. Beason, J. Choi, et al., Applicability of DryadLINQ to Scientific Applications, Community Grids Laboratory, Indiana University, http://grids.ucs.indiana.edu/ptliupages/publications/DryadReport.pdf, 2010.Google ScholarGoogle Scholar
  497. J. Qiu, J. Ekanayake, T. Gunarathne, J. Choi, S. Bae, Y. Ruan, et al., Data Intensive Computing for Bioinformatics, http://grids.ucs.indiana.edu/ptliupages/publications/DataIntensiveComputing_ BookChapter.pdf, 2009.Google ScholarGoogle Scholar
  498. J. Ekanayake, T. Gunarathne, J. Qiu, Cloud Technologies for Bioinformatics Applications, IEEE Trans. Parallel Distrib. Syst., (2010). Google ScholarGoogle Scholar
  499. J. Qiu, T. Gunarathne, J. Ekanayake, J. Choi, S. Bae, H. Li, et al., Hybrid Cloud and Cluster Computing Paradigms for Life Science Applications, in: 11th Annual Bioinformatics Open Source Conference BOSC, Boston, 9-10 July 2010.Google ScholarGoogle Scholar
  500. M. Burrows, The Chubby Lock Service for Loosely-Coupled Distributed Systems, in: OSDI'06: Seventh Symposium on Operating System Design and Implementation, USENIX, Seattle, WA, 2006, pp. 335-350. Google ScholarGoogle Scholar
  501. G.C. Fox, A. Ho, E. Chan, W. Wang, Measured characteristics of distributed cloud computing infrastructure for message-based collaboration applications, in: Proceedings of the 2009 International Symposium on Collaborative Technologies and Systems, IEEE Computer Society, 2009, pp. 465-467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  502. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, et al., Dynamo: Amazon's highly available key-value store, SIGOPS Oper. Syst. Rev. 41 (6) (2007) 205-220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  503. Eucalyptus LLC, White Papers. http://www.eucalyptus.com/whitepapers.Google ScholarGoogle Scholar
  504. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, et al., The Eucalyptus Open-Source Cloud-Computing System, in: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID '09, Shanghai, 18-21 May 2009, pp. 124-131. Google ScholarGoogle Scholar
  505. K. Keahey, I. Foster, T. Freeman, X. Zhang, Virtual workspaces: achieving quality of service and quality of life in the Grid, Scientific Prog. J. 13 (4) (2005) 265-275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  506. Nimbus, Cloud computing for science, http://www.nimbusproject.org, 2010.Google ScholarGoogle Scholar
  507. Nimbus, Frequently Asked Questions, http://www.nimbusproject.org/docs/current/faq.html, 2010.Google ScholarGoogle Scholar
  508. Django, High-Level Python Web Framework, http://www.djangoproject.com/, 2010.Google ScholarGoogle Scholar
  509. Amazon, Simple Storage Service API Reference: API Version 2006-03-01, http://awsdocs.s3.amazonaws .com/S3/latest/s3-api.pdf, 2006.Google ScholarGoogle Scholar
  510. boto, Python interface to Amazon Web Services, http://code.google.com/p/boto/, 2010.Google ScholarGoogle Scholar
  511. S3tools project, Open source tools for accessing Amazon S3-Simple Storage Service, http://s3tools.org/s3tools, 2010.Google ScholarGoogle Scholar
  512. bitbucket, JetS3t: open-source Java toolkit and application suite for Amazon Simple Storage Service (Amazon S3), Amazon CloudFront content delivery network, and Google Storage. http://bitbucket.org/jmurty/jets3t/wiki/Home.Google ScholarGoogle Scholar
  513. Amazon, Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2.Google ScholarGoogle Scholar
  514. OpenNebula, industry standard open source cloud computing tool. http://opennebula.org/.Google ScholarGoogle Scholar
  515. I.M. Llorente, R. Moreno-Vozmediano, R.S. Montero, Cloud Computing for On-Demand Grid Resource Provisioning, in: Advances in Parallel Computing: High Speed and Large Scale Scientific Computing vol. 18, IOS Press, 2009, pp. 177-191.Google ScholarGoogle Scholar
  516. R. Monteroa, R. Moreno-Vozmediano, I. Llorente, An elasticity model for high throughput computing clusters, J. Parallel Distrib. Comput. (May) (2010). Google ScholarGoogle Scholar
  517. B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Capacity Leasing in Cloud Systems Using the OpenNebula Engine, in: 2008 Workshop on Cloud Computing and Its Applications (CCA08), Chicago, IL, 2008, http://www.cca08.org/papers/Paper20-Sotomayor.pdf.Google ScholarGoogle Scholar
  518. libvirt, virtualization API. http://libvirt.org.Google ScholarGoogle Scholar
  519. B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure management in private and hybrid clouds, IEEE Internet Comp. 13 (5) (2009) 14-22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  520. ElasticHosts, Flexible servers in the cloud. http://www.elastichosts.com/.Google ScholarGoogle Scholar
  521. Sector/Sphere, High Performance Distributed File System and Parallel Data Processing Engine. http://sector.sourceforge.net.Google ScholarGoogle Scholar
  522. Y. Gu, R. Grossman, Sector/Sphere: A Distributed Storage and Computing Platform. SC08 Poster, http://sector.sourceforge.net/pub/sector-sc08-poster.pdf, 2008.Google ScholarGoogle Scholar
  523. Y. Gu, R. Grossman, Lessons learned from a year's worth of benchmarks of large data clouds, in: Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, ACM, Portland, Oregon, 2009, pp. 1-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  524. Y. Gu, R. Grossman, UDT: UDP-based data transfer for high-speed wide area networks, Comput. Netw. 51 (7) (2007) 1777-1799. Google ScholarGoogle ScholarDigital LibraryDigital Library
  525. FUSE, Filesystem in Userspace. http://fuse.sourceforge.net.Google ScholarGoogle Scholar
  526. Y. Gu, R.L. Grossman, Sector and sphere: the design and implementation of a high-performance data cloud, Phil. Trans. R. Soc. A 367 (2009) 2429-2445.Google ScholarGoogle ScholarCross RefCross Ref
  527. Open Stack, Open Source, Open Standards Cloud, http://openstack.org/index.php, 2010.Google ScholarGoogle Scholar
  528. VSCSE, Big Data for Science. Virtual Summer School hosted by SALSA group at Indiana University, 26 July-30 July 2010, http://salsahpc.indiana.edu/tutorial/.Google ScholarGoogle Scholar
  529. T. Hey, The Fourth Paradigm: Data-Intensive Scientific Discovery, http://research.microsoft.com/en-us/um/redmond/events/TonyHey/21216/player.htm, 2010.Google ScholarGoogle Scholar
  530. T. Hey, S. Tansley, K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, http://research .microsoft.com/en-us/collaboration/fourthparadigm/, 2009 (accessed 07.11.10).Google ScholarGoogle Scholar
  531. SALSA Group, Catalog of Cloud Material, http://salsahpc.indiana.edu/content/cloud-materials, 2010.Google ScholarGoogle Scholar
  532. Microsoft Research, Cloud Futures Workshop, http://research.microsoft.com/en-us/events/cloudfutures2010/default.aspx, 2010.Google ScholarGoogle Scholar
  533. T. Chou, Introduction to Cloud Computing: Business and Technology, Active Book Press, LLC, 2010, p. 252, http://www.lulu.com/items/volume_67/8215000/8215197/1/print/8215197.pdf.Google ScholarGoogle Scholar
  534. R. Buyya, C. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599-616. Google ScholarGoogle ScholarDigital LibraryDigital Library
  535. P. Chaganti, Cloud computing with Amazon Web Services, Part 1: Introduction -- When it's smarter to rent than to buy, http://www.ibm.com/developerworks/architecture/library/ar-cloudaws1/, 2008.Google ScholarGoogle Scholar
  536. Cloud computing with Amazon Web Services, Part 2: Storage in the cloud with Amazon Simple Storage Service (S3)-Reliable, flexible, and inexpensive storage and retrieval of your data, http://www.ibm .com/developerworks/architecture/library/ar-cloudaws2/, 2008.Google ScholarGoogle Scholar
  537. P. Chaganti, Cloud computing with Amazon Web Services, Part 3: Servers on demand with EC2, http://www.ibm.com/developerworks/architecture/library/ar-cloudaws3/, 2008.Google ScholarGoogle Scholar
  538. M.R. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for science grids: a viable solution? in: Proceedings of the 2008 International Workshop on Data-aware Distributed Computing, ACM, Boston, MA, 2008, pp. 55-64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  539. W. Sun, K. Zhang, S. Chen, X. Zhang, H. Liang, Software as a Service: An Integration Perspective, in: Fifth International Conference Service-Oriented Computing-ICSOC, Lecture Notes in Computer Science, Vol. 4749, Springer Verlag, Vienna Austria, 2007, pp. 558-569. Google ScholarGoogle Scholar
  540. G. Lakshmanan, Cloud Computing. Relevance to Enterprise, http://www.infosys.com/cloud-computing/white-papers/Documents/relevance-enterprise.pdf, 2009.Google ScholarGoogle Scholar
  541. N. Leavitt, Is cloud computing really ready for prime time? Computer 42 (1) (2009) 15-20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  542. G. Lin, G. Dasmalchi, J. Zhu, Cloud Computing and IT as a Service: Opportunities and Challenges, in: Web Services, ICWS '08, IEEE, Beijing, 23-26 September 2008. Google ScholarGoogle Scholar
  543. D.S. Linthicum, Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step Guide, Addison-Wesley Professional, 2009. Google ScholarGoogle Scholar
  544. L. Mei, W.K. Chan, T.H. Tse, A Tale of Clouds: Paradigm Comparisons and Some Thoughts on Research Issues, in: Asia-Pacific Services Computing Conference. APSCC '08 IEEE, Yilan, Taiwan, 9-12 December 2008, pp. 464-469. Google ScholarGoogle Scholar
  545. G. Fox, S. Bae, J. Ekanayake, X. Qiu, H. Yuan, Parallel Data Mining from Multicore to Cloudy Grids, book chapter of High Speed and Large Scale Scientific Computing, IOS Press, Amsterdam, 2009, http://grids.ucs.indiana.edu/ptliupages/publications/CetraroWriteupJune11-09.pdf.Google ScholarGoogle Scholar
  546. J. Ekanayake, G. Fox, High Performance Parallel Computing with Clouds and Cloud Technologies, in: First International Conference CloudComp on Cloud Computing, Munich, Germany, 2009.Google ScholarGoogle Scholar
  547. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, et al., BigTable: a distributed storage system for structured data, ACM Trans. Comput. Syst. 26 (2) (2008) 1-26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  548. E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing science on the cloud: the Montage example, in: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, IEEE Press, Austin, Texas, 2008, pp. 1-12, http://www.csd.uwo.ca/faculty/hanan/cs843/papers/ewa-ec2.pdf. Google ScholarGoogle ScholarCross RefCross Ref
  549. C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, et al., On the Use of Cloud Computing for Scientific Workflows, in: Proceedings of the 2008 Fourth IEEE International Conference on eScience, IEEE Computer Society, 2008, pp. 640-645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  550. N. Paton, A. Marcelo, T. De Aragão, K. Lee, A. Alvaro, R. Sakellariou, Optimizing utility in cloud computing through autonomic workload execution, Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, http://www.cs.man.ac.uk/~alvaro/publications/TCDEBull09.pdf, 2009.Google ScholarGoogle Scholar
  551. B. Rochwerger, et al., The Reservoir model and architecture for open federated cloud computing, IBM J. Res. Dev. 53 (4) (2009) 4:1-4:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  552. W. Allcock, J. Bresnahan, R. Kettimuthu, et al., The globus striped gridFTP framework and server, in: Proceedings of the ACM/IEEE Conference on Supercomputing, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  553. R. Aydt, D. Gunter, W. Smith, et al., A Grid Monitoring Architecture, Global Grid Forum Performance Working Group, 2002.Google ScholarGoogle Scholar
  554. F. Azzedin, M. Maheswaran, A trust brokering system and its application to resource management in public-resource grids, in: Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS '04), Santa Fe, NM, April 26, 2004, p. 22a.Google ScholarGoogle ScholarCross RefCross Ref
  555. F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao, Application-level scheduling on distributed heterogeneous networks, in: Proceedings of the ACM/IEEE Conference on Supercomputing, Pittsburgh, 1996. Google ScholarGoogle Scholar
  556. F. Berman, G. Fox, T. Hey (Eds.), Grid Computing: Making the Global Infrastructure a Reality, Wiley Series in Communications Networking and Distributed Systems, Wiley, 2003. Google ScholarGoogle Scholar
  557. V. Berstis, Fundamentals of grid computing. IBM Publication, http://www.redbooks.ibm.com/abstracts/redp3613.html, 2011 (accessed 26.04.11).Google ScholarGoogle Scholar
  558. BOINCstats-Boinc combined credit overview, http://www.boincstats.com/stats/project_graph.php?pr=bo, 2011 (accessed 26.04.11).Google ScholarGoogle Scholar
  559. R. Buyya, D. Abramson, S. Venugopal, The Grid Economy, in: Proceedings of the IEEE, 2005, pp. 698-714.Google ScholarGoogle ScholarCross RefCross Ref
  560. R. Buyya, K. Bubendorfer (Eds.), Market Oriented Grid and Utility Computing, John Wiley & Sons, 2009. Google ScholarGoogle Scholar
  561. A. Chervenak, et al., Giggle: a framework for constructing scalable replica location services, in: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, Baltimore, 16-22 November 2002. Google ScholarGoogle ScholarCross RefCross Ref
  562. Dongarra, I. Fister, G. Fox, et al., Sourcebook of Parallel Computing, Morgan Kaufman Publishers, 2002. Google ScholarGoogle Scholar
  563. L. Ferreira, et al., Introduction to Grid Computing with Globus, (http://www.redbooks.ibm.com/abstracts/sg246895.html?OPen) Google ScholarGoogle Scholar
  564. L. Ferreira, et al., Grid Computing in Research and Education, (http://www.redbooks.ibm.com/abstracts/sg246649.html?OPen) Google ScholarGoogle Scholar
  565. Folding@Home. (http://fah-web.stanford.edu/cgi-bin/main.py?qtype=ossrats), 2011, (accessed 7.03.2011).Google ScholarGoogle Scholar
  566. I. Foster, C. Kasselman, Grid2: Blueprint for a New Computing Infrastructure, Morgan Kaufman Publishers, 2002. Google ScholarGoogle Scholar
  567. I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable virtual organizations, Int. J High. Perform. Comput. Appl. 15 (3) (2001) 200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  568. I. Foster, Globus toolkit version 4: software for service-oriented systems, J. Comput. Sci. Technol. 21 (4) (2006) 513-520.Google ScholarGoogle Scholar
  569. L. Francesco, et al., The many faces of the integration of instruments and the grid, Int. J. Web. Grid. Services 3 (3) (2007) 239-266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  570. L. Gong, S.H. Sun, E.F. Watson, Performance modeling and prediction of non-dedicated network computing, IEEE. Trans. Comput., (2002). Google ScholarGoogle Scholar
  571. G. Yuan, H. Jin, M. Li, N. Xiao, W. Li, Z. Wu, Y. Wu, Grid computing in China, J. Grid. Comput. 2 (2) (2004).Google ScholarGoogle Scholar
  572. W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, K. Stockinger, Data management in an international data grid project, in: Proceedings of the 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), Bangalore, India, 17 December 2000, pp. 77-90. Google ScholarGoogle ScholarCross RefCross Ref
  573. K. Hwang, Z. Xu, Scalable Parallel Computing, McGraw-Hill, 1998. Google ScholarGoogle Scholar
  574. K. Hwang, Y. Kwok, S. Song, M. Cai, Yu Chen, Y. Chen, DHT-based security infrastructure for trusted internet and grid computing, Int. J. Crit. Infrastructures 2 (4) (2006) 412-433.Google ScholarGoogle ScholarCross RefCross Ref
  575. M.A. Iverson, F. Ozguner, L. Potter, Statistical prediction of task execution time through analytical benchmarking for scheduling in a heterogeneous environment, IEEE. Trans. Comput., (1999) 1374-1379. Google ScholarGoogle Scholar
  576. L. Jiadao, R. Yahyapour, Negotiation model supporting co-allocation for grid scheduling, in: Proceedings of the 7th IEEE/ACM International Conference on Grid Computing, 2006, p. 8. Google ScholarGoogle Scholar
  577. H. Jin, Challenges of grid computing, Advances in Web-Age Information Management. Lecture Notes in Computer Science, 3739 (2005) 25-31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  578. M. Kalantari, M. Akbari, Fault-aware grid scheduling using performance prediction by workload modelling, J. Supercomput. 46 (1) (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  579. C. Karnow, The grid: blueprint for a new computing infrastructure, Leonardo 32 (4) (1999) 331-332.Google ScholarGoogle ScholarCross RefCross Ref
  580. K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource management systems for distributed computing, Softw. Pract. Exper. 32 (2) (2002) 135-164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  581. R. Kwok, K. Hwang, S. Song, Selfish grids: game-theoretic modeling and NAS/PSA benchmark evaluation, IEEE Trans. Parallel. Distrib. Syst., (May) (2007). Google ScholarGoogle ScholarCross RefCross Ref
  582. M. Li, M. Baker, The Grid: Core Technologies, Wiley, 2005, (http://coregridtechnologies.org/). Google ScholarGoogle Scholar
  583. H. Li, Performance evaluation in grid computing: a modeling and prediction perspective, in: Seventh IEEE International Symposium on Cluster Computing and The Grid, (CCGrid 2007), May 2007, pp. 869-874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  584. X. Lijuan, Z. Yanmin, L.M. Ni, Z. Xu, GridIS: an incentive-based grid scheduling, in: Proceedings of the 19th IEEE Int'l Parallel and Distributed Processing Symposium, 4-8 April 2005. Google ScholarGoogle Scholar
  585. C. Lin, V. Varadharajan, Y. Wang, V. Pruthi. Enhancing grid security with trust management, in: Proc. of the 2004 IEEE International Conference on Services Computing, Washington, DC, 14 September 2004, pp. 303-310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  586. J. Nash, Non-Cooperative Games, Ann. Math. Second Series 54 (2) (1951) 286-295.Google ScholarGoogle ScholarCross RefCross Ref
  587. P. Plaszczak, R. Wellner, Grid Computing: The Savvy Manager's Guide, Kaufmann, 2006. Google ScholarGoogle Scholar
  588. M. Poess, N. Raghunath, Larege-scale data warehouses on grid, http://www.vldb2005.org/program/papertue/p1055-poess.pdf, 2005.Google ScholarGoogle Scholar
  589. J. Schopf, F. Berman, Performance prediction in production environments, in: 12th International Parallel Processing Symposium, Orlando, FL, April 1998, pp. 647-653. Google ScholarGoogle ScholarCross RefCross Ref
  590. SETI@Home credir overview, (http://www.boincstats.com/stats/project_graph.php?pr=sah), (accessed 21.04.11).Google ScholarGoogle Scholar
  591. H. Shen, K. Hwang, Locality-preserving clustering and discovery of resources in wide-area computational grids, IEEE. Trans. Comput. (accepted to appear 2011). Google ScholarGoogle Scholar
  592. R. Smith, Grid computing: a brief technology analysis, CTO Network Library. (http://www.ctonet.org/documents/GridComputing_analysis.pdfGoogle ScholarGoogle Scholar
  593. S. Song, K. Hwang, R. Zhou, Y.K. Kwok, Trusted P2P transactions with fuzzy reputation aggregation, IEEE. Internet. Comput. (November-December) (2005) 18-28. Google ScholarGoogle Scholar
  594. S. Song, K. Hwang, Y.K. Kwok, Trusted grid computing with security binding and trust integration, J. Grid. Comput. 3 (1-2) (2005).Google ScholarGoogle ScholarCross RefCross Ref
  595. S. Song, K. Hwang, Y. Kwok, Risk-tolerant heuristics and genetic algorithms for security-assured grid job scheduling, IEEE. Trans. Comput., (2006) 703-719. Google ScholarGoogle Scholar
  596. Sun Microsystems, How Sun Grid Engine, enterprise edition works. White paper, www.sun.com/sofware/gridware/sgeee53/wp-sgeee.pdf, 2001.Google ScholarGoogle Scholar
  597. I. Taylor, From P2P to Web Services and Grids, Springer-Verlag, London, 2005.Google ScholarGoogle Scholar
  598. D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the condor experience, Concurrency. Comput. Pract. Exp., (2005) 323-356. Google ScholarGoogle Scholar
  599. S. Venugopal, R. Buyya, K. Ramamohanarao, A taxonomy of data grids for distributed data sharing, management, and processing. ACM. Comput. Surv. 38 (1) (2006) 1-53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  600. S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling e-science applications on global data grids, Concurrency. Comput. Pract. Exp. 18 (6) (2006) 685-699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  601. H. Wang, Z. Xu, Y. Gong, W. Li, Agora: grid community in Vega grid, in: Proceedings of the 2nd International Workshop on Grid and Cooperative Computing, Shanghai, China, 7 December, 2003, pp. 685-691.Google ScholarGoogle Scholar
  602. V. Welch, et al., Security for grid services, in: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, June 22-24, 2003, pp. 48-57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  603. Wikipedia, Grid Computing. http://een.wikipedia.org/wiki/Grid_computing, (accessed 26.04.11).Google ScholarGoogle Scholar
  604. Y. Wu, S. Wu, H. Yu, C. Hu, CGSP: an extensible and reconfigurable grid framework, Lect. Notes. Comput. Sci. 3756 (2005) 292-300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  605. Y. Wu, C. Hu, L. Zha, S. Wu, Grid middleware in China, Int. J. Web. Grid. Serv. 3 (4) (2007) 371-402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  606. Y. Wu, K. Hwang, Y. Yuan, W. Zheng, Adaptive workload prediction of grid performance in confidence windows, IEEE Trans. Parallel. Distrib. Syst., (July) (2010). Google ScholarGoogle Scholar
  607. Y.W. Wu, S. Wu, H.S. Yu, C.M. Hu, Introduction to ChinaGrid support platform, in: Proceedings of Parallel and Distributed Processing and Applications, 2005, pp. 232-240. Google ScholarGoogle Scholar
  608. Z. Xu, W. Li, L. Zha, H. Yu, D. Liu, Vega: a computer systems approach to grid computing, J. Grid. Comput. 2 (2) (2004) 109-120.Google ScholarGoogle ScholarCross RefCross Ref
  609. L. Yang, I. Foster, J.M. Schopf, Homeostatic and tendency-based CPU load predictions, in: International Parallel and Distributed Processing Symposium, 2003, pp. 42-50. Google ScholarGoogle ScholarCross RefCross Ref
  610. X. Zhang, J. Schopf, Performance analysis of the globus toolkit monitoring and discovery service, MDS2, in: Proceedings of the Int'l Workshop on Middleware Performance, 2004, pp. 843-849.Google ScholarGoogle Scholar
  611. W. Zheng, L. Liu, M. Hu, Y. Wu, L. Li, F. He, J. Tie, CGSV: an adaptable stream-integrated grid monitoring system, Network. Parallel. Comput. 3779 (2005) 22-31. Lecture Notes in Computer Science, Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  612. S. Androutsellis, D. Spinellis, A survey of P2P content distribution technologies. ACM. Comput. Surv. (December) (2004). Google ScholarGoogle Scholar
  613. L. Amaral, A. Scala, M. Barthelemy, M. Stanley, Classes of small-world networks. Natl. Acad. Sci. 97 (21) (2000).Google ScholarGoogle Scholar
  614. S.A. Baset, H. Schulzrinne, An analysis of the Skype peer-to-peer Internet telephony protocol, in: Proceedings of IEEE INFOCOM, April 2006.Google ScholarGoogle ScholarCross RefCross Ref
  615. R. Bindal, P. Cao, W. Chan, et al., Improving traffic locality in BitTorrent via biased neighbor selection, in: Proceedings of IEEE ICDCS, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  616. B. Bloom, Space/time tradeoffs in hash coding with allowable errors. Commun. ACM. 13 (7) (1970) 422-426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  617. J. Buford, H. Yu, E. Lua, P2P Networking and Applications, Morgan Kaufmann, December 2008. Also www.p2pna.com. Google ScholarGoogle Scholar
  618. M. Castro, P. Druschel, Y.C. Hu, A. Rowstron, Exploiting network proximity in distributed hash tables, in: Proceedings of the International Workshop on Future Directions in Distributed Computing, June 2002.Google ScholarGoogle Scholar
  619. X. Cheng, J. Liu, NetTube: exploring social networks for peer-to-peer short video sharing, in: Proceedings of IEEE Infocom, March 2009.Google ScholarGoogle ScholarCross RefCross Ref
  620. S. Chen, B. Shi, S. Chen, ACOM: any-source capacity-constrained overlay multicast in non-DHT P2P networks, in: IEEE Transactions on Parallel and Distributed Systems, September 2007, pp. 1188-1201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  621. I. Clarke, O. Sandberg, B. Wiley, T.W. Hong, Freenet: a distributed anonymous information storage and retrieval system, in: ICSI Workshop on Design Issues in Anonymity and Unobservability, June 2000.Google ScholarGoogle Scholar
  622. E. Cohen, S. Shenker, Replication strategies in unstructured peer-to-peer networks, in: ACM SIGCOMM, 2002. Google ScholarGoogle Scholar
  623. A. Fiat, J. Saia, M. Young, Making chord robust to Byzantine attacks, in: Proceedings of the European Symposium on Algorithms (ESA), 2005. Google ScholarGoogle Scholar
  624. A.J. Ganesh, A.M. Kermarrec, L. Massoulié, Peer-to-peer membership management for gossip-based protocols. IEEE. Trans. Computers. 52 (2) (2003) 139-149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  625. P.B. Godfrey, S. Shenker, I. Stoica, Minimizing churn in distributed systems. in: Proceedings of ACM SIGCOMM, 2006. Google ScholarGoogle Scholar
  626. S. Guha, N. Daswani, R. Jain, An experimental study of the Skype peer-to-peer VoIP system, in: Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS), February 2006.Google ScholarGoogle Scholar
  627. K.P. Gummadi, R. Gummadi, S.D. Gribble, et al., The impact of DHT routing geometry on resilience and proximity, in: Proceedings of ACM SIGCOMM, 2003. Google ScholarGoogle ScholarCross RefCross Ref
  628. M. Hefeeda, O. Saleh, Traffic modeling and proportional partial caching for peer-to-peer systems, in: IEEE/ACM Transactions on Networking, December 2008, pp. 1447-1460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  629. Y. Huang, et al., Challenges, design and analysis of a large-scale P2P VOD system, in: Proceedings of ACM SIGCOMM 2008, Seattle, August 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  630. K. Hwang, D. Li, Trusted cloud computing with secure resources and data coloring, IEEE. Inte. Comput. (September) (2010) 14-22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  631. S. Kamvar, M. Schlosser, H. Garcia-Molina, The Eigentrust algorithm for reputation management in P2P networks, ACM WWW '03, Budapest, Hungary, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  632. A. Keromytis, V. Misra, D. Rubenstein, SOS: secure overlay services, in: Proceedings of ANM SIGCOMM' 02, Pittsburg, PA. August 2002. Google ScholarGoogle Scholar
  633. J. Kleinberg, The small-world phenomenon: an algorithmic perspective, in: Proceedings 32nd ACM Symposium on Theory of Computing, Portland, OR. May 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  634. J. Leitao, J. Pereira, L. Rodrigues, Epidemic broadcast trees, in: Proceedings of the 26th IEEE International Symposium on Reliable Distributed Systems, October 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  635. Z. Li, G. Xie, K. Hwang, Z. Li, Churn-resilient protocol for massive data dissemination in P2P networks, in: IEEE Transactions on Parallel and Distributed Systems, accepted to appear 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  636. Z. Li, G. Xie, Z. Li, Efficient and scalable consistency maintenance for heterogeneous peer-to-peer systems, in: IEEE Transactions on Parallel and Distributed Systems, December 2008, pp. 1695-1708. Google ScholarGoogle Scholar
  637. Z. Li, G. Xie, Enhancing content distribution performance of locality-aware BitTorrent systems, in: Proceedings of IEEE Globecom, December 2010.Google ScholarGoogle Scholar
  638. L. Liu, W. Shi, Trust and reputation management, in: IEEE Internet Computing, September 2010, pp. 10-13. (special issue).Google ScholarGoogle Scholar
  639. Y. Liu, L. Xiao, X. Liu, L. M Ni, X. Zhang, Location awareness in unstructured peer-to-peer systems, in: IEEE Transactions on Parallel and Distributed Systems, February 2005, pp. 163-174. Google ScholarGoogle Scholar
  640. J. Liu, S.G. Rao, B. Li, H. Zhang, Opportunities and challenges of peer-to-peer internet video broadcast, in: Proceedings of the IEEE Special Issue on Recent Advances in Distributed Multimedia Communications, Vol. 96 (1), 2008, pp. 11-24.Google ScholarGoogle Scholar
  641. T. Locher, P. Moor, S. Schmid, R. Watenhofer, Free riding in BitTorrent is cheap, in: Proceedings of ACM HotNets, November 2006.Google ScholarGoogle Scholar
  642. X. Lou, K. Hwang, Collusive piracy prevention in P2P content delivery networks, in: IEEE Transactions on Computers, Vol. 58, (7) 2009, pp. 970-983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  643. B.T. Loo, R. Huebsch, I. Stoica, J. M. Hellerstein, The Case for a Hybrid P2P Search Infrastructure, 3rd International Workshop on Peer-to-Peer Systems, February 2004. Google ScholarGoogle Scholar
  644. Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in unstructured peer-to-peer networks, in: Proceedings of the ACM International Conference on Supercomputing, June 2002. Google ScholarGoogle ScholarCross RefCross Ref
  645. B. Maniymaran, M. Bertier, A.-M. Kermarrec, Build one, get one free: leveraging the coexistence of multiple P2P overlay networks, in: Proceedings of the International Conference on Distributed Computing Systems, Toronto, June 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  646. P. Maymounkov, D. Mazières, Kademlia: a peer-to-peer information system based on the XOR metric, in: Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS), March 2002. Google ScholarGoogle ScholarCross RefCross Ref
  647. N. Magharei, R. Rejaie, Y. Guo, Mesh or multiple-tree: a comparative study of live P2P streaming approaches, in: Proceedings of IEEE INFOCOM, Alaska, May 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  648. G. Pallis, A. Vakali, Insight and perspectives for content delivery networks, Commun. ACM 49 (1) (2006) 101-106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  649. K. Ross, D. Rubenstein, Peer-to-peer systems, in: IEEE Infocom, Hong Kong, 2004, (Tutorial slides).Google ScholarGoogle Scholar
  650. A. Rowstron, P. Druschel, Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems, in: Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany, November 2001, pp. 329-350. Google ScholarGoogle ScholarCross RefCross Ref
  651. S. Ratnasamy, P. Francis, M. Handley, R. Karp, A scalable content-addressable network, in: Proceedings of ACM SIGCOMM, August 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  652. S. Saroiu, P. Gummadi, S. Gribble, A measurement study of peer-to-peer file sharing systems, in: Multimedia Computing and Networking (MMCN '02), January 2002.Google ScholarGoogle Scholar
  653. H. Shen, C. Xu, Locality-aware and churn-resilient load balancing algorithms in structured peer-to-peer networks, in: IEEE Transactions on Parallel and Distributed Systems, Vol. 18 (6), June 2007, pp. 849-862. Google ScholarGoogle ScholarDigital LibraryDigital Library
  654. S. Song, K. Hwang, R Zhou, Y.K. Kwok, Trusted P2P transactions with fuzzy reputation aggregation, in: IEEE Internet Computing, November-December 2005, pp. 18-28. Google ScholarGoogle Scholar
  655. M. Steiner, T. En-Najjary, E. Biersack, Long term study of peer behavior in the KAD DHT, in: IEEE/ ACM Transactions on Networking, Vol. 17 (6) 2009. Google ScholarGoogle Scholar
  656. I. Stoica, R. Morris, D. Liben-Nowell, et al., Chord: a scalable peer-to-peer lookup service for Internet applications, in: IEEE/ACM Transactions on Networking, Vol. 11 (1) February 2003, pp. 17-32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  657. K. Spripanidkulchai, B. Maggs, H. Zhang, Efficient content location using interest-based locality in peer-to-peer systems, in: Proceedings of IEEE INFOCOM, 2003.Google ScholarGoogle Scholar
  658. C. Tang, R.N. Chang, C. Ward, GoCast: gossip-enhanced overlay multicast for fast and dependable group communication, in: Proceedings of the International Conference on Dependable Systems and Networks, Yokohama, Japan, June 2005, pp. 140-149. Google ScholarGoogle Scholar
  659. V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread: heterogeneous unstructured tree-based peer to peer multicast, in: 14th IEEE International Conference on Network Protocols, November 2006, pp. 2-11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  660. Y. Wang, J. Vassileva, Trust and reputation model in peer-to-peer networks, in: Third International Conference on Peer-to-Peer Computing, August 2003. Google ScholarGoogle Scholar
  661. Wikipedia, Peer to Peer. http://en.wikipedia.org/wiki/Peer-to-peer, 2010 (accessed 14.08.2010).Google ScholarGoogle Scholar
  662. R.H. Wouhaybi, A.T. Campbell, Phoenix: supporting resilient low-diameter peer-to-peer topologies, in: IEEE INFOCOM, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  663. L. Xiao, Y. Liu, L.M. Ni, Improving unstructured peer-to-peer systems by adaptive connection establishment, in: IEEE Transactions on Computers, Vol. 54 (9), September 2005, pp. 1091-1103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  664. L. Xiong, L. Liu, Peertrust: supporting reputation-based trust for peer-to-peer electronic communities, in: IEEE Transactions on Knowledge and Data Engineering, Vol. 16 (7), 2004, pp. 843-857. Google ScholarGoogle ScholarDigital LibraryDigital Library
  665. Z. Xu, C. Tang, Z. Zhang, Building topology-aware overlays using global soft-state, in: Proceedings on the International Conference on Distributed Computing Systems, 2003. Google ScholarGoogle Scholar
  666. M. Yang, Y. Dai, X. Li, Bring reputation system to social network in the maze P2P file-sharing system, in: IEEE 2006 International Symposium on Collaborative Technologies and Systems (CTS 2006), Las Vegas, 14-17 May 2006. Google ScholarGoogle Scholar
  667. Z. Zhang, S. Chen, Y. Ling, R. Chow, Capacity-aware multicast algorithms in heterogeneous overlay networks, in: IEEE Transactions on Parallel and Distributed Systems, February 2006, pp. 135-147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  668. R. Zhou, K. Hwang, PowerTrust for fast reputation aggregation in peer-to-peer networks, in: IEEE Transactions on Parallel and Distributed Systems, April 2007, pp. 460-473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  669. R. Zhou, K. Hwang, M. Cai, GossipTrust for fast reputation aggregation in peer-to-peer networks, in: IEEE Transactions on Knowledge and Data Engineering, September 2008, pp. 1282-1295. Google ScholarGoogle ScholarCross RefCross Ref
  670. Z. Zhou, Z. Li, G. Xie, ACNS: Adaptive complementary neighbor selection in BitTorrent-like applications, in: Proceedings of IEEE ICC 2009, Germany, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  671. Y. Zhu, Y. Hu, Enhancing search performance on Gnutella-Like P2P systems, in: IEEE Transactions on Parallel and Distributed Systems, Vol. 17 (12), December 2006, pp. 1482-1495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  672. M. Armbrust, A. Fox, R. Griffith, et al., Above the Clouds: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28, University of California at Berkley, 10 February 2009.Google ScholarGoogle Scholar
  673. C. Bardaki, P. Kourouthanassis, RFID-integrated retail supply chain services: Lessons learnt from the SMART project, in: Proceedings of the Mediterranean Conference on Information Systems (MCIS 2009), Athens, Greece.Google ScholarGoogle Scholar
  674. M. Barrenechea, SGI CEO. HPC Cloud-Cyclone. www.sgi.com/cyclone, 2010.Google ScholarGoogle Scholar
  675. J. Bishop, Understanding and Facilitating the Development of Social Networks in Online Dating Communities: A Case Study and Model. www.jonathanbishop.com/Library/Documents/EN/docSNCEDS_Ch15 .pdf, 2008.Google ScholarGoogle Scholar
  676. R. Bryant, Data Intensive Supercomputing: The Case for DISC, Technical Report, CMU CS-07-128, http://www.cs.cmu.edu/~bryant, 2007.Google ScholarGoogle Scholar
  677. J. Brodkin, Ten Cloud Computing Companies to Watch. Network World. www.cio.com/article/print/ 492885, 2010.Google ScholarGoogle Scholar
  678. S. Buchegger, A. Datta, A case for P2P infrastructure for social networks: Opportunities, challenges, in: Sixth International Conference on Wireless on-Demand Network Systems and Services (WONS 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  679. R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and Paradigms, Wiley Press, New York, 2011. Google ScholarGoogle Scholar
  680. R. Buyya, C. Yeo, S. Venugopal, Market-oriented cloud computing: Vision, hype, and reality for delivering IT services as computing utilities, in: 10th IEEE International Conference on High Performance Computing and Communications, September 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  681. P. Carrington, et al., (Eds.), Modelsand Methods in Social Network Analysis, Cambridge University Press, 2005.Google ScholarGoogle Scholar
  682. CERN VM download. http://rbuilder.cern.ch/project/cernvm/build?id=81, 2010.Google ScholarGoogle Scholar
  683. K. Chen, K. Hwang, G. Chen, Heuristic discovery of role-based trust chains in P2P networks, IEEE Trans. Parallel Distrib. Syst. (2009) 83-96. Google ScholarGoogle Scholar
  684. Condor Cloud Computing. www.cs.wisc.edu/condor/description.html, 2010.Google ScholarGoogle Scholar
  685. J. Dean, Handling Large Datasets at Google: Current Systems and Future Directions, Invited Talk at HSF Panel. http://labs.google.com/people/jeff, 2008.Google ScholarGoogle Scholar
  686. E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing science on the cloud: The Montage example, in: Proc. of ACM/IEEE Conf. on Supercomputing, IEEE Press, Austin, TX, 2008, pp. 1-12. Google ScholarGoogle Scholar
  687. M. Demirbas, M.A. Bayir, C.G. Akcora, Y.S. Yilmaz, H. Ferhatosmanoglu, Crowd-sourced sensing and collaboration using Twitter, in: IEEE International Symposium on World of Wireless Mobile and Multimedia Networks (WoWMoM), Montreal, 14-17 June 2010, pp. 1-9. Google ScholarGoogle Scholar
  688. Distributed Robotics Garden, MIT. http://people.csail.mit.edu/nikolaus/drg/, 2010.Google ScholarGoogle Scholar
  689. V. Dixit, Cloud Mashup: Agility and Scalability, EE 657 Final Project Report, Univ. of S. Calif., May 2010.Google ScholarGoogle Scholar
  690. J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, G. Fox, High performance parallel computing with clouds and cloud technologies, in: Cloud Computing and Software Services: Theory and Techniques, CRC Press (Taylor and Francis), 2010, p. 30.Google ScholarGoogle ScholarCross RefCross Ref
  691. J. Ekanayake, A.S. Balkir, T. Gunarathne, et al., DryadLINQ for scientific analyses, in: Fifth IEEE International Conference on eScience, Oxford, England, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  692. J. Ekanayake, H. Li, B. Zhang, et al., Twister: A runtime for iterative MapReduce, in: Proceedings of the First Int'l Workshop on MapReduce and Its Applications, ACM HPDC, 20-25 June 2010, Chicago. Google ScholarGoogle Scholar
  693. J. Ekanayake, T. Gunarathne, J. Qiu, Cloud technologies for bioinformatics applications, in: IEEE Transactions on Parallel and Distributed Systems, accepted to appear, http://grids.ucs.indiana.edu/ptliupages/publications/BioCloud_TPDS_Journal_Jan4_2010.pdf, 2011. Google ScholarGoogle Scholar
  694. S. Farnham, The Facebook Application Ecosystem, An O'Reilly Radar Report, 2008.Google ScholarGoogle Scholar
  695. Q. Feng, K. Hwang, Y. Dai, Rainbow Product Ranking for Upgrading e-Commerce, IEEE Internet Comput. 13 (5) (2009) 72-80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  696. D.G. Feitelson, Workload Modeling for Computer Systems Performance Evaluation, Draft Version 0.7, Hebrew University of Jerusalem, 2006.Google ScholarGoogle Scholar
  697. P. Fong, M. Anwar, Z. Zhao, A privacy preservation model for Facebook-style social network systems, in: European Symposium on Research in Computer Security (ESORICS 2009), 21-23 September 2009. Google ScholarGoogle ScholarCross RefCross Ref
  698. F. Fovet, Impact of the use of Facebook amongst students of high school age with social, emotional and behavioural difficulties (SEBD), in: IEEE 39th Frontiers in Education Conference, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  699. G. Fox, S. Bae, J. Ekanayake, X. Qiu, H. Yuan, Parallel data mining from multicore to cloudy grids, in: High Speed and Large Scale Scientific Computing, IOS Press, Amsterdam, 2009.Google ScholarGoogle Scholar
  700. L. Freeman, The Development of Social Network Analysis, Empirical Press, Vancouver, 2006.Google ScholarGoogle Scholar
  701. FutureGrid Cyberinfrastructure to allow testing of innovative systems and applications, Home page. www .futuregrid.org, (accessed 13.11.10).Google ScholarGoogle Scholar
  702. S.L. Garfinkel, An evaluation of Amazon's grid computing services: EC2, S3 and SQS, in: Center for Research on Computation and Society, Harvard University, Technical Report, 2007.Google ScholarGoogle Scholar
  703. S. Garfinkel, Commodity grid computing with Amazon's S3 and EC2, Login 32 (1) (2007) 7-13.Google ScholarGoogle Scholar
  704. L. Gong, S.H. Sun, E.F. Watson, Performance modeling and prediction of non-dedicated network computing, IEEE Trans. Computers 51 (9) (2002) 1041-1055. Google ScholarGoogle ScholarDigital LibraryDigital Library
  705. A. Greenberg, J. Hamilton, D.A. Maltz, P. Patel, The cost of a cloud: Research problems in data center networks, in: SIGCOMM Computer Communication Review, Vol. 39, No. 1, pp. 68-73, 2008, http://doi .acm.org/10.1145/1496091.1496103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  706. Grid'5000 and ALADDIN-G5K: An infrastructure distributed in 9 sites around France, for research in large-scale parallel and distributed systems. https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home, (accessed 20.11.10).Google ScholarGoogle Scholar
  707. R. Grossman, Y. Gu, M. Sabala, et al., The open cloud testbed: Supporting open source cloud computing systems based on large scale high performance, in: A. Doulamis, et al., (Eds.), DynamicNetwork Services, Springer, Berlin Heidelberg, 2010, pp. 89-97.Google ScholarGoogle Scholar
  708. R. Grossman, Y. Gu, J. Mambretti, et al., An overview of the open science data cloud, in: Proc. of the 19th ACM Int'l Symp. on High Performance Distributed Computing, Chicago, 2010, pp. 377-384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  709. T. Gunarathne, T.L. Wu, J. Qiu, G. Fox, Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications, in: Proceedings of the Emerging Computational Methods for the Life Sciences Workshop of ACM HPDC 2010 Conference, Chicago, 20-25 June 2010. Google ScholarGoogle Scholar
  710. C. Hoffa, et al., On the use of cloud computing for scientific workflows, in: IEEE Fourth International Conference on eScience, December 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  711. J. Hopcroft, Computer science theory to support research in the information age, in: Distinguished Lecture, University of Southern California, 6 April 2010.Google ScholarGoogle Scholar
  712. K. Hwang, Z. Xu, Scalable Parallel Computing: Technology, Architecture and Programmability, McGraw-Hill Book Co., New York, 1998. Google ScholarGoogle Scholar
  713. K. Hwang, D. Li, Trusted cloud computing with secure resources and data coloring, IEEE Internet Comput. (September) (2010) 14-22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  714. K. Keahey, M. Tsugawa, A. Matsunaga, J. Fortes, Sky computing, IEEE Internet Comput. 13 (2009) 43-51, doi:http://doi.ieeecomputersociety.org/10.1109/MIC.2009.94; www.nimbusproject.org/files/Sky_Computing.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  715. J. Kleinberg, Algorithmic Perspectives on Large-Scale Social Network Data, Cornell University, 2008.Google ScholarGoogle Scholar
  716. G. Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy, Smart objects as building blocks for the Internet of things, IEEE Internet Comput. 14 (1) (2010) 44-51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  717. R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, in: The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  718. E.A. Lee, Cyber physical systems: Design challenges, in: 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing, 5-7 May 2008, pp. 363-369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  719. A. Langville, C. Meyer, Google's PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, Princeton, NJ, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  720. J. Leskovec, K. Langt, A. Dagupta, M. Mahoney, Statistical properties of community structure in large social and information networks, in: International World Wide Web Conference, (WWW), 2008. Google ScholarGoogle Scholar
  721. H. Li, Performance evaluation in grid computing: A modeling and prediction perspective, in: Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007), May 2007, pp. 869-874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  722. Z.Y. Li, G. Xie, K. Hwang, Z.C. Li, Proximity-Aware overlay network for fast and churn resilient data dissemination, in: IEEE Transactions on Parallel and Distributed Systems, Accepted to appear 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  723. D. Linthicum, Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step Guide, Addison Wesley Professional, 2009. Google ScholarGoogle Scholar
  724. B.A. Lloyd, Professional networking on the Internet, in: Pulp and Paper Industry Technical Conference, Birmingham, AL, 2009, pp. 62-66.Google ScholarGoogle ScholarCross RefCross Ref
  725. X. Lou, K. Hwang, Collusive Piracy Prevention in P2P Content Delivery Networks, IEEE Trans. Computers 58 (July) (2009) 970-983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  726. X. Lou, K. Hwang, Y. Hu, Accountable file indexing against poisoning DDoS attacks in P2P networks, in: IEEE Globecom, Honolulu, 3 November 2009. Google ScholarGoogle Scholar
  727. Magellan: A cloud for science at Argonne. http://magellan.alcf.anl.gov/, (accessed 15.11.10).Google ScholarGoogle Scholar
  728. L. Mei, W. Chan, T. Tse, A tale of clouds: Paradigm comparisons and some thoughts on research issues, in: IEEE Asia-Pacific Services Computing Conference, December 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  729. A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, in: The 7th ACM SIGCOMM Conference on Internet Measurement, October 2007. Google ScholarGoogle Scholar
  730. J. Napper, P. Bientinesi, Can cloud computing reach the top500? in: Proceedings of the Combined Workshops on Unconventional High Performance Computing Workshop Plus Memory Access Workshop, ACM, Ischia, Italy, 2009, pp. 17-20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  731. Nimbus Cloud Computing. http://workspace.globus.org/, 2010.Google ScholarGoogle Scholar
  732. W. Norman, M. Paton, T. de Aragao, et al., Optimizing utility in cloud computing through autonomic workload execution, in: IEEE Computer Society Technical Committee on Data Engineering, 2009.Google ScholarGoogle Scholar
  733. D. Nurmi, R. Wolski, C. Grzegorczyk, et al., Eucalyptus: A technical report on an elastic utility computing architecture linking your programs to useful systems, UCSB, Santa Barbara, Technical Report, 2008.Google ScholarGoogle Scholar
  734. C. Olston, B. Reed, B.U. Srivastava, et al., Pig Latin: A not-so-foreign language for data processing, in: Proceedings of the 2008 ACM SIGMOD Int'l Conf. on Management of Data, Vancouver, 9-12 June 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  735. Open Cirrus, Welcome to Open Cirrus, the HP/Intel/Yahoo! Open Cloud Computing Research Testbed. https://opencirrus.org/, (accessed 20.11.10).Google ScholarGoogle Scholar
  736. M. Palankar, A. Onibokun, A. Iamnitchi, M. Ripeanu, Amazon S3 for science grids: A viable solution? Computer Science and Engineering, University of South Florida, Technical Report, 2007.Google ScholarGoogle Scholar
  737. A. Passant, T. Hastrup, U. Bojars, J. Breslin, Microblogging: A semantic web and distributed approach, in: 4th Workshop on Scripting for the Semantic Web in conjunction with ESWC 2008.Google ScholarGoogle Scholar
  738. J. Qiu, T. Gunarathne, J. Ekanayake, et al., Hybrid cloud and cluster computing paradigms for life science applications, in: 11th Annual Bioinformatics Open Source Conference (BOSC 2010), Boston, 9-10 July 2010.Google ScholarGoogle ScholarCross RefCross Ref
  739. J. Qiu, T. Ekanayake, T. Gunarathne, et al., Data Intensive Computing for Bioinformatics. http://grids.ucs .indiana.edu/ptliupages/publications/DataIntensiveComputing_BookChapter.pdf, 29 December 2009.Google ScholarGoogle Scholar
  740. D. Reed, Clouds, clusters and ManyCore: The revolution ahead, in: IEEE International Conference on Cluster Computing, 29 September-1 October 2008.Google ScholarGoogle Scholar
  741. J. Rittinghouse, J. Ransome, Cloud Computing: Implementation, Management and Security, CRC Publisher, 2010. Google ScholarGoogle Scholar
  742. B. Rochwerger, D. Breitgand, E. Levy, et al., The Reservoir Model and Architecture for Open Federated Cloud Computing, IBM Syst. J. (2008). Google ScholarGoogle Scholar
  743. V. Sanhu, The CERN Virtual Machine and Cloud Computing, B.S. Thesis at the Dept. of Physics, University of Victoria, Canada, 29 January 2010.Google ScholarGoogle Scholar
  744. G. Santucci, The Internet of Things: Between the Revolution of the Internet and the Metamorphosis of Objects. http://ec.europa.eu/information_society/policy/rfid/documents/iotrevolution.pdf, 2010.Google ScholarGoogle Scholar
  745. M. Satyanarayanan, V. Bahl, R. Caceres, N. Davies, The case for VM-based cloudlets in mobile computing, IEEE Pervasive Comput. 8 (4) (2009) 14-23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  746. J. Schopf, F. Berman, Performance prediction in production environments, in: 12th International Parallel Processing Symposium, Orlando, FL, April 1998, pp. 647-653. Google ScholarGoogle ScholarCross RefCross Ref
  747. Science Clouds: Informal group of small clouds made available by various institutions on a voluntary basis. http://scienceclouds.org/, (accessed November 2010).Google ScholarGoogle Scholar
  748. H. Song, Exploring Facebook and Twitter Technologies for P2P Social Networking, in: EE 657 Final Project Report, University of Southern California, May 2010.Google ScholarGoogle Scholar
  749. H. Sundmaeker, P. Guillemin, P. Friess, S. Woelfflé, Vision and Challenges for Realising the Internet of Things, European Union, March 2010.Google ScholarGoogle Scholar
  750. Venus-C, Virtual Multidisciplinary Environmemnts Using Cloud Infrastructure. www.venus-c.eu/Pages/Home.aspx, (accessed November 2010).Google ScholarGoogle Scholar
  751. E. Walker, Benchmarking Amazon EC2 for high-performance scientific computing, Login 33 (5) (2008) 18-23.Google ScholarGoogle Scholar
  752. E. Welbourne, L. Battle, G. Cole, et al., Building the Internet of things using RFID: the RFID ecosystem experience, IEEE Internet Comput. 13 (3) (2009) 48-55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  753. S. Wasserman, K. Faust, Social Networks Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994.Google ScholarGoogle Scholar
  754. D. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press, Princeton, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  755. M. Weng, A Multimedia Social Networking Community for Mobile Devices, Tisch School of The Arts, New York University, 2007.Google ScholarGoogle Scholar
  756. Wikipedia, Cyber-physical systems. http://en.wikipedia.org/wiki/Cyber-physical_system, 2010.Google ScholarGoogle Scholar
  757. Wikipedia, Social Network. http://en.wikipedia.org/wiki/Social_network, 2010.Google ScholarGoogle Scholar
  758. Wikipedia, Facebook. http://en.wikipedia.org/wiki/Facebook, March 3, 2011.Google ScholarGoogle Scholar
  759. Wikipedia, Mashup (web app hybrid). http://en.wikipedia.org/wiki/Mashup_%28web_application_hybrid%, 29 November 2010.Google ScholarGoogle Scholar
  760. Y. Wu, K. Hwang, Y. Yuan, C. Wu, Adaptive workload prediction of grid performance in confidence windows, IEEE Trans. Parallel Distrib. Syst. 21 (July) (2010) 925-938. Google ScholarGoogle Scholar
  761. Z. Xu, K. Hwang, Early prediction of MPP performance: SP2, T3D, and paragon experiences, J. Parallel Comput. 22 (7) (1996) 917-942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  762. L. Yan, Y. Zhang, L.T. Yang, H. Ning, The Internet of Things: From RFID to the Next-Generation Pervasive Networked Systems, Auerbach Publications, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  763. B. Yan, G. Huang, Supply chain information transmission based on RFID and Internet of things, in: International Colloquium on Computing, Communication, Control, and Management (CCCM 2009) Vol. 4, 2009, pp. 166-169.Google ScholarGoogle Scholar
  764. M. Yigitbasi, A. Iosup, D. Epema, C-Meter: a framework for performance analysis of computing clouds, in: International Workshop on Cloud Computing, May 2009.Google ScholarGoogle Scholar
  765. B.J. Zhang, Y. Ruan, T.L. Wu, J. Qiu, A. Hughes, G. Fox, Applying twister to scientific applications, in: International Conference on Cloud Computing (CloudCom 2010), http://grids.ucs.indiana.edu/ptliupages/publications/PID1510523.pdf, 2010. Google ScholarGoogle Scholar

Cited By

  1. ACM
    Mengistu T and Che D (2019). Survey and Taxonomy of Volunteer Computing, ACM Computing Surveys, 52:3, (1-35), Online publication date: 31-May-2020.
  2. Kurdi H, Alfaries A, Al-Anazi A, Alkharji S, Addegaither M, Altoaimy L and Ahmed S (2019). A lightweight trust management algorithm based on subjective logic for interconnected cloud computing environments, The Journal of Supercomputing, 75:7, (3534-3554), Online publication date: 1-Jul-2019.
  3. Cayirci E and De Oliveira A (2018). Modelling trust and risk for cloud services, Journal of Cloud Computing: Advances, Systems and Applications, 7:1, (1-16), Online publication date: 1-Dec-2018.
  4. ACM
    Foster D, White L, Adams J, Erdil D, Hyman H, Kurkovsky S, Sakr M and Stott L Cloud computing: developing contemporary computer science curriculum for a cloud-first future Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, (130-147)
  5. Plazolles B, El Baz D, Spel M, Rivola V and Gegout P (2018). SIMD Monte-Carlo Numerical Simulations Accelerated on GPU and Xeon Phi, International Journal of Parallel Programming, 46:3, (584-606), Online publication date: 1-Jun-2018.
  6. Patra S (2018). Energy-Efficient Task Consolidation for Cloud Data Center, International Journal of Cloud Applications and Computing, 8:1, (117-142), Online publication date: 1-Jan-2018.
  7. Jiang J, Lin Y, Xie G, Fu L and Yang J (2017). Time and Energy Optimization Algorithms for the Static Scheduling of Multiple Workflows in Heterogeneous Computing System, Journal of Grid Computing, 15:4, (435-456), Online publication date: 1-Dec-2017.
  8. Gupta B and Badve O (2017). Taxonomy of DoS and DDoS attacks and desirable defense mechanism in a Cloud computing environment, Neural Computing and Applications, 28:12, (3655-3682), Online publication date: 1-Dec-2017.
  9. Kumar S and Raza Z (2017). Internet of Things, International Journal of Systems and Service-Oriented Engineering, 7:3, (32-52), Online publication date: 1-Jul-2017.
  10. ACM
    Imani M, Gupta S and Rosing T Ultra-Efficient Processing In-Memory for Data Intensive Applications Proceedings of the 54th Annual Design Automation Conference 2017, (1-6)
  11. Jafarnejad Ghomi E, Masoud Rahmani A and Nasih Qader N (2017). Load-balancing algorithms in cloud computing, Journal of Network and Computer Applications, 88:C, (50-71), Online publication date: 15-Jun-2017.
  12. Han Y and Chronopoulos A (2017). Scalable Loop Self-Scheduling Schemes for Large-Scale Clusters and Cloud Systems, International Journal of Parallel Programming, 45:3, (595-611), Online publication date: 1-Jun-2017.
  13. ACM
    She H, Wittenberg O and Warren I An ad hoc broadcasting application by way of mobile devices Proceedings of the Australasian Computer Science Week Multiconference, (1-10)
  14. Liang L, Jin L and Liu D (2017). Edge-Aware Label Propagation for Mobile Facial Enhancement on the Cloud, IEEE Transactions on Circuits and Systems for Video Technology, 27:1, (125-138), Online publication date: 1-Jan-2017.
  15. Newman R, Chang V, Walters R and Wills G (2016). Web 2.0-The past and the future, International Journal of Information Management: The Journal for Information Professionals, 36:4, (591-598), Online publication date: 1-Aug-2016.
  16. (2016). Review of economic bubbles, International Journal of Information Management: The Journal for Information Professionals, 36:4, (497-506), Online publication date: 1-Aug-2016.
  17. Zhao B, Gu Y, Ruan Y and Chen Q (2016). Two game-based solution concepts for a two-agent scheduling problem, Cluster Computing, 19:2, (769-781), Online publication date: 1-Jun-2016.
  18. Cao T, He Y and Kondo M Demand-aware power management for power-constrained HPC systems Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, (21-31)
  19. Refaat T, Kantarci B and Mouftah H (2016). Virtual machine migration and management for vehicular clouds, Vehicular Communications, 4:C, (47-56), Online publication date: 1-Apr-2016.
  20. Bouvry P, Mayer R, Muszynski J, Petcu D, Rauber A, Tempesti G, Trinh T and Varrette S (2015). Resilience within Ultrascale Computing System, Supercomputing Frontiers and Innovations: an International Journal, 2:2, (46-63), Online publication date: 6-Apr-2015.
  21. ACM
    Liu X, Wang D, Yuan D, Wang F and Yang Y Throughput based temporal verification for monitoring large batch of parallel processes Proceedings of the 2014 International Conference on Software and System Process, (124-133)
  22. Cayirci E A joint trust and risk model for MSaaS mashups Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World, (1347-1358)
  23. Liu X, Yang Y, Cao D and Yuan D Selecting checkpoints along the time line: a novel temporal checkpoint selection strategy for monitoring a batch of parallel business processes Proceedings of the 2013 International Conference on Software Engineering, (1281-1284)
  24. ACM
    Fox G Large scale data analytics on clouds Proceedings of the fourth international workshop on Cloud data management, (21-24)
  25. ACM
    Zhao Z, Hwang K and Villeta J Game cloud design with virtualized CPU/GPU servers and initial performance results Proceedings of the 3rd workshop on Scientific Cloud Computing, (23-30)
Contributors
  • The University of Tennessee, Knoxville
  • University of Virginia

Reviews

George Dimitoglou

If you were to ask ten people in computer science to define the term "distributed computing," you would likely receive ten different, yet correct, answers. Clearly there are no data or surveys to support this claim, but it is probably true and indicative of the breadth of this area of computing. So what is distributed computing__?__ Is it Internet computing__?__ Is it parallel computing or cloud computing__?__ Is it grid computing or Web services or peer-to-peer computing__?__ Well, it is all of the above and more, and this book manages to provide a comprehensive overview of the state of distributed computing today. The book is organized in three parts: "Systems Modelling, Clustering and Virtualization"; "Computing Clouds, Service-Oriented Architecture and Programming"; and "Grids, Peer-to-Peer and the Future of the Internet." Comprising three chapters, the first part introduces various distributed computing platforms and environments. It covers the gamut from network-based systems and cloud and clustered computing to virtual machines (VMs), grids, graphics processing units (GPUs), and massively parallel processors. The second part focuses on the principles and enabling technologies of cloud computing and service-oriented architectures (SOAs). It also contains a chapter dealing with the software development aspects in cloud environments, covering several programming paradigms (for example, MapReduce, Dryad, Sawall, and Pig Latin) and contemporary cloud platforms such as Google's App Engine, Amazon's EC2, and Microsoft's Azure. The third and last part of the book covers grid and peer-to-peer networks, and showcases existing clouds developed by industry and government organizations (for example, IBM, SGI, NASA, CERN). The book provides broad coverage of everything one needs to know about the field, striking a good balance between details that do not overwhelm and the basic principles. The authors provide many figures to support and illustrate the material. It is readable, coherent, and well structured and would be useful as a textbook for a primer in distributed systems for upper-level undergraduates or first-year graduate students. It would be equally appropriate for practitioners involved in hot contemporary information technology (IT) areas such as virtualization and cloud computing. Any professional in almost any capacity, from software developers to IT architects and chief information officers (CIOs), could benefit from reading the book to understand how things work or by having it as a reference. Besides explaining and contextualizing how distributed systems work, the book's coverage of numerous commercial platforms and technologies would serve as a useful resource to professionals engaged in deploying or planning modern distributed systems. For some, the strengths of the book may also be its weaknesses. In their attempt to be comprehensive, the authors couldn't cover all of the topics in depth. However, each chapter contains references to external sources (that is, scholarly papers and books) that could be very useful to help guide anyone interested in getting more information on a specific subject. The inclusion of current technologies and platforms may be attractive to practitioners and certainly increases the timeliness of the material, but it may also render this edition of the text obsolete within a few years. Having said that, I think it is interesting to see just from the mere arrangement of the chapters how distributed computing topics have evolved: the ruling platforms of the late 1990s and early 2000s-peer-to-peer networks and grid computing-have now taken a back seat to virtualization and cloud computing. Despite these quibbles, I find the book an excellent resource. It is well organized, and it contains extensive bibliographic notes at the end of each chapter along with appropriate problems and exercises that reinforce the material. Overall, this is perhaps the most comprehensive, timely, and well-written book in distributed computing available today. Online Computing Reviews Service

David Bruce Henderson

Distributed and cloud computing are receiving significant popular attention. While there is a great deal of marketing fervor and hype associated with the topic, it is undoubtedly one of the most important aspects of information technology today. There are literally dozens of books available on the subject, but this one differs in that it is designed primarily as a textbook, covering the design and application of distributed and cloud systems. The book is easy to navigate, and considerable effort appears to have been put into the format and layout. A detailed table of contents and thorough index allow for easy use as a reference, and appropriate diagrams and tables are employed throughout. The book is divided into three parts, each beginning with a brief summary. Each chapter begins with a chapter outline and ends with a set of problems (with solutions) for students and references. Part 1 starts with an introductory chapter on the changes in computing over the past three decades. Scalable computing, network-based systems, modeling, and distributed and cloud computing performance are covered. Two chapters then provide detailed coverage of clustering, parallel computing technologies, and virtual machines, particularly as deployed in data centers. Part 2 looks at cloud computing. Various cloud platforms, including infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS), are covered. Chapters are devoted to cloud platform architecture in virtualized data center environments, service-oriented architectures for distributed computing, and distributed software programming environments. The topics discussed in each chapter are supported with detailed real-world examples. Part 3, the last part, examines future trends in distributed computing. One chapter covers the design, the platform, middleware, standards, and resource management in grid computing systems. Peer-to-peer (P2) computing and overlay networks are then discussed. In the last chapter, future trends in cloud and Internet computing are covered, along with an examination of some existing public and private cloud examples. The authors provide good general coverage of the technologies behind distributed and cloud computing. The writing style is quite consistent across the multiple contributors. Although there are many other titles on the subject, this book provides up-to-date general coverage and is laid out so as to be useful as a textbook. The thorough index and good table of contents-particularly the "distributed" tables of contents at the beginning of each chapter-also make it useful as a reference book. Online Computing Reviews Service

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Please enable JavaScript to view thecomments powered by Disqus.

Recommendations