To coordinate effectively, multiple agents must reason about the interactions between their local decisions. Distributed planning and scheduling, distributed resource allocation and distributed task allocation are some examples of multiagent problems that require such reasoning. To represent these automated reasoning problems, researchers in Multiagent Systems have proposed constraints as a key paradigm. Previous research in Artificial Intelligence and Constraint Programming has shown that constraints are a convenient yet powerful way to represent reasoning problems.
This dissertation advances the state-of-the-art in Multiagent Systems and Constraint Programming through three key innovations. First, this dissertation introduces a novel algorithm, named Adopt, for Distributed Constraint Optimization Problems (DCOP). Adopt is the first algorithm for DCOP that is asynchronous and guaranteed to terminate with the optimal solution. Adopt is empirically shown to yield orders of magnitude speedups over existing synchronous methods. The key idea is to perform distributed optimization based on conservative estimates rather than exact knowledge of global solution quality.
Second, this dissertation introduces bounded-error approximation as a flexible method whereby agents can find global solutions that may not be optimal but are guaranteed to be within a given distance from optimal. This method is useful for time-limited domains because it decreases solution time and communication overhead. Bounded-error approximation is a significant departure from existing incomplete local methods, which rely exclusively on local information to obtain a decrease in solution time but at the cost of abandoning all theoretical guarantees on solution quality.
Third, this dissertation presents generalized mapping strategies that allow a significant class of distributed resource allocation problem to be automatically represented via distributed constraints. These mapping strategies are significant because they not only illustrate the utility of our distributed constraint representation but also provide multiagent researchers with a reusable methodology for solving their own distributed resource allocation problems.
These dissertation is intended for future researchers faced with solving distributed reasoning problems and opens the door for solving such problems under real-time dynamic conditions while providing theoretical guarantees on solution quality.
Cited By
- van Leeuwen C and Pawełczak P CoCoA Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, (3944-3950)
- Khanna S, Sattar A, Hansen D and Stantic B An Efficient Algorithm for Solving Dynamic Complex DCOP Problems Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 02, (339-346)
- Fan W and Xue F Optimize cooperative agents with organization in distributed scheduling system Proceedings of the 2006 international conference on Intelligent computing: Part II, (502-509)
- Scerri P, Farinelli A, Okamoto S and Tambe M Allocating Roles in Extreme Teams Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 3, (1502-1503)
- Scerri P and Sycara K Challenges in building very large teams Proceedings of the First international conference on Massively Multi-Agent Systems, (86-103)
- Scerri P, Modi J, Shen W and Tambe M Are multiagent algorithms relevant for real hardware? Proceedings of the 2003 ACM symposium on Applied computing, (38-44)
Index Terms
- Distributed constraint optimization for multiagent systems
Recommendations
Distributed constraint optimization and its application to multiagent resource allocation
Eighteenth national conference on Artificial intelligenceDistributed optimization requires the optimization of a global objective function that is distributed among a set of autonomous, communicating agents and is unknown by any individual agent. The problem is inherently distributed and the Solution strategy ...
Solving Multiagent Networks Using Distributed Constraint Optimization
In many cooperative multiagent domains, the effect of local interactions between agents can be compactly represented as a network structure. Given that agents are spread across such a network, agents directly interact only with a small group of neighbors. ...
Algorithms for Distributed Constraint Satisfaction: A Review
When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that ...