• Siro C, Aliannejadi M and De Rijke M. (2023). Understanding and Predicting User Satisfaction with Conversational Recommender Systems. ACM Transactions on Information Systems. 42:2. (1-37). Online publication date: 31-Mar-2024.

    https://doi.org/10.1145/3624989

  • Engelmann B, Breuer T, Friese J, Schaer P and Fuhr N. Context-Driven Interactive Query Simulations Based on Generative Large Language Models. Advances in Information Retrieval. (173-188).

    https://doi.org/10.1007/978-3-031-56060-6_12

  • Breuer T, Fuhr N and Schaer P. (2023). Validating Synthetic Usage Data in Living Lab Environments. Journal of Data and Information Quality. 0:0.

    https://doi.org/10.1145/3623640

  • Warren C. (2023). Beyond efficiency and renewables. How to Create Sustainable Hospitality. 10.23912/9781911635659-5428. Online publication date: 1-Feb-2023.

    https://www.goodfellowpublishers.com/academic-publishing.php?content=doi&doi=10.23912/9781911635659-5428

  • Rajagopal P, Aghris T, Fettah F and Ravana S. (2023). Clustering of Relevant Documents Based on Findability Effort in Information Retrieval. International Journal of Information Retrieval Research. 10.4018/IJIRR.315764. 12:1. (1-18). Online publication date: 6-Jan-2023.

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.315764

  • Zobel J. (2023). When Measurement Misleads. ACM SIGIR Forum. 56:1. (1-20). Online publication date: 1-Jun-2022.

    https://doi.org/10.1145/3582524.3582540

  • Douze L, Pelayo S, Messaadi N, Grosjean J, Kerdelhué G and Marcilly R. (2022). Designing Formulae for Ranking Search Results: Mixed Methods Evaluation Study. JMIR Human Factors. 10.2196/30258. 9:1. (e30258).

    https://humanfactors.jmir.org/2022/1/e30258

  • Moffat A. Batch Evaluation Metrics in Information Retrieval: Measures, Scales, and Meaning. IEEE Access. 10.1109/ACCESS.2022.3211668. 10. (105564-105577).

    https://ieeexplore.ieee.org/document/9908535/

  • Wicaksono A and Moffat A. (2021). Modeling search and session effectiveness. Information Processing and Management: an International Journal. 58:4. Online publication date: 1-Jul-2021.

    https://doi.org/10.1016/j.ipm.2021.102601

  • van der Vegt A, Zuccon G and Koopman B. (2021). Do better search engines really equate to better clinical decisions? If not, why not?. Journal of the Association for Information Science and Technology. 72:2. (141-155). Online publication date: 18-Jan-2021.

    https://doi.org/10.1002/asi.24398

  • Heggo I and Abdelbaki N. (2021). Textual Matching Framework for Measuring Similarity Between Profiles in E-recruitment. Intelligent Systems in Big Data, Semantic Web and Machine Learning. 10.1007/978-3-030-72588-4_21. (291-315).

    https://link.springer.com/10.1007/978-3-030-72588-4_21

  • Hersh W. (2020). Research. Information Retrieval: A Biomedical and Health Perspective. 10.1007/978-3-030-47686-1_8. (337-405).

    http://link.springer.com/10.1007/978-3-030-47686-1_8

  • Butavicius M, Parsons K, McCormac A, Dennis S, Ceglar A, Weber D, Ferguson L, Treharne K, Leibbrandt R and Powers D. (2018). Using Semantic Context to Rank the Results of Keyword Search. International Journal of Human–Computer Interaction. 10.1080/10447318.2018.1485263. 35:9. (725-741). Online publication date: 28-May-2019.

    https://www.tandfonline.com/doi/full/10.1080/10447318.2018.1485263

  • Monti D, Palumbo E, Rizzo G and Morisio M. (2019). Sequeval: An Offline Evaluation Framework for Sequence-Based Recommender Systems. Information. 10.3390/info10050174. 10:5. (174).

    https://www.mdpi.com/2078-2489/10/5/174

  • Rajagopal P, Ravana S, Koh Y and Balakrishnan V. (2018). Evaluating the effectiveness of information retrieval systems using effort-based relevance judgment. Aslib Journal of Information Management. 10.1108/AJIM-04-2018-0086.

    https://www.emeraldinsight.com/doi/10.1108/AJIM-04-2018-0086

  • Sohail S, Siddiqui J and Ali R. (2018). A comprehensive approach for the evaluation of recommender systems using implicit feedback. International Journal of Information Technology. 10.1007/s41870-018-0202-4.

    http://link.springer.com/10.1007/s41870-018-0202-4

  • Tomasi S, Schuff D and Turetken O. (2018). Understanding novelty: how task structure and tool familiarity moderate performance. Behaviour & Information Technology. 10.1080/0144929X.2018.1441325. 37:4. (406-418). Online publication date: 3-Apr-2018.

    https://www.tandfonline.com/doi/full/10.1080/0144929X.2018.1441325

  • Schnabel T, Bennett P, Dumais S and Joachims T. Short-Term Satisfaction and Long-Term Coverage. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. (513-521).

    https://doi.org/10.1145/3159652.3159700

  • Buchanan G, McKay D, Velloso E, Moffat A, Turpin A and Scholer F. Only forward?. Proceedings of the 29th Australian Conference on Computer-Human Interaction. (497-502).

    https://doi.org/10.1145/3152771.3156165

  • Jiang J and Allan J. Adaptive Persistence for Search Effectiveness Measures. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (747-756).

    https://doi.org/10.1145/3132847.3133033

  • Roegiest A, Tan L and Lin J. Online In-Situ Interleaved Evaluation of Real-Time Push Notification Systems. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (415-424).

    https://doi.org/10.1145/3077136.3080808

  • Beel J, Gipp B, Langer S and Breitinger C. (2016). Research-paper recommender systems. International Journal on Digital Libraries. 17:4. (305-338). Online publication date: 1-Nov-2016.

    https://doi.org/10.1007/s00799-015-0156-0

  • Umemoto K, Yamamoto T and Tanaka K. How do users handle inconsistent information?. Proceedings of the 31st Annual ACM Symposium on Applied Computing. (1066-1071).

    https://doi.org/10.1145/2851613.2851698

  • Beel J, Breitinger C, Langer S, Lommatzsch A and Gipp B. (2016). Towards reproducibility in recommender-systems research. User Modeling and User-Adapted Interaction. 26:1. (69-101). Online publication date: 1-Mar-2016.

    https://doi.org/10.1007/s11257-016-9174-x

  • Verma M, Yilmaz E and Craswell N. On Obtaining Effort Based Judgements for Information Retrieval. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. (277-286).

    https://doi.org/10.1145/2835776.2835840

  • Schuth A and Balog K. (2016). Living Labs for Online Evaluation: From Theory to Practice. Advances in Information Retrieval. 10.1007/978-3-319-30671-1_88. (893-896).

    http://link.springer.com/10.1007/978-3-319-30671-1_88

  • Gao N and Oard D. A Head-Weighted Gap-Sensitive Correlation Coefficient. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (799-802).

    https://doi.org/10.1145/2766462.2767793

  • Wang Y, Sherman G, Lin J and Efron M. Assessor Differences and User Preferences in Tweet Timeline Generation. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (615-624).

    https://doi.org/10.1145/2766462.2767699

  • Schuth A, Hofmann K and Radlinski F. Predicting Search Satisfaction Metrics with Interleaved Comparisons. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (463-472).

    https://doi.org/10.1145/2766462.2767695

  • Hjørland B. (2015). Classical databases and knowledge organization. Journal of the Association for Information Science and Technology. 66:8. (1559-1575). Online publication date: 1-Aug-2015.

    https://doi.org/10.1002/asi.23250

  • Li L, Chen S, Kleban J and Gupta A. Counterfactual Estimation and Optimization of Click Metrics in Search Engines. Proceedings of the 24th International Conference on World Wide Web. (929-934).

    https://doi.org/10.1145/2740908.2742562

  • Vicente-López E, Campos L, Fernández-Luna J, Huete J, Tagua-Jiménez A and Tur-Vigil C. (2015). An automatic methodology to evaluate personalized information retrieval systems. User Modeling and User-Adapted Interaction. 25:1. (1-37). Online publication date: 1-Mar-2015.

    https://doi.org/10.1007/s11257-014-9148-9

  • Li L, Kim J and Zitouni I. Toward Predicting the Outcome of an A/B Experiment for Search Relevance. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. (37-46).

    https://doi.org/10.1145/2684822.2685311

  • Elbedweihy K, Wrigley S, Clough P and Ciravegna F. (2015). An overview of semantic search evaluation initiatives. Web Semantics: Science, Services and Agents on the World Wide Web. 30:C. (82-105). Online publication date: 1-Jan-2015.

    https://doi.org/10.1016/j.websem.2014.10.001

  • Beel J and Langer S. (2015). A Comparison of Offline Evaluations, Online Evaluations, and User Studies in the Context of Research-Paper Recommender Systems. Research and Advanced Technology for Digital Libraries. 10.1007/978-3-319-24592-8_12. (153-168).

    http://link.springer.com/10.1007/978-3-319-24592-8_12

  • Yilmaz E, Verma M, Craswell N, Radlinski F and Bailey P. Relevance and Effort. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (91-100).

    https://doi.org/10.1145/2661829.2661953

  • Peter Willett P and Ruthven I. (2014). (2014). Relevance behaviour in TREC. Journal of Documentation. 10.1108/JD-02-2014-0031. 70:6. (1098-1117). Online publication date: 7-Oct-2014.. Online publication date: 7-Oct-2014.

    https://www.emerald.com/insight/content/doi/10.1108/JD-02-2014-0031/full/html

  • Azzopardi L. Modelling interaction with economic models of search. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (3-12).

    https://doi.org/10.1145/2600428.2609574

  • Scholer F, Moffat A and Thomas P. Choices in batch information retrieval evaluation. Proceedings of the 18th Australasian Document Computing Symposium. (74-81).

    https://doi.org/10.1145/2537734.2537745

  • Urbano J, Schedl M and Serra X. (2013). Evaluation in Music Information Retrieval. Journal of Intelligent Information Systems. 41:3. (345-369). Online publication date: 1-Dec-2013.

    https://doi.org/10.1007/s10844-013-0249-4

  • Beel J, Langer S, Genzmehr M, Gipp B, Breitinger C and Nürnberger A. Research paper recommender system evaluation. Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation. (15-22).

    https://doi.org/10.1145/2532508.2532512

  • Beel J, Genzmehr M, Langer S, Nürnberger A and Gipp B. A comparative analysis of offline and online evaluations and discussion of research paper recommender system evaluation. Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation. (7-14).

    https://doi.org/10.1145/2532508.2532511

  • Azzopardi L, Kelly D and Brennan K. How query cost affects search behavior. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (23-32).

    https://doi.org/10.1145/2484028.2484049

  • Rieh S, Kim Y and Markey K. (2012). Amount of invested mental effort (AIME) in online searching. Information Processing and Management: an International Journal. 48:6. (1136-1150). Online publication date: 1-Nov-2012.

    https://doi.org/10.1016/j.ipm.2012.05.001

  • Baskaya F, Keskustalo H and Järvelin K. Time drives interaction. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. (105-114).

    https://doi.org/10.1145/2348283.2348301

  • Smucker M and Clarke C. Time-based calibration of effectiveness measures. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. (95-104).

    https://doi.org/10.1145/2348283.2348300

  • Vakkari P and Huuskonen S. (2012). Search effort degrades search output but improves task outcome. Journal of the American Society for Information Science and Technology. 10.1002/asi.21683. 63:4. (657-670). Online publication date: 1-Apr-2012.

    https://onlinelibrary.wiley.com/doi/10.1002/asi.21683

  • Krikon E and Kurland O. (2011). A study of the integration of passage-, document-, and cluster-based information for re-ranking search results. Information Retrieval. 10.1007/s10791-011-9168-6. 14:6. (593-616). Online publication date: 1-Dec-2011.

    http://link.springer.com/10.1007/s10791-011-9168-6

  • Harman D. (2011). Information Retrieval Evaluation. Synthesis Lectures on Information Concepts, Retrieval, and Services. 10.2200/S00368ED1V01Y201105ICR019. 3:2. (1-119). Online publication date: 31-May-2011.

    http://www.morganclaypool.com/doi/abs/10.2200/S00368ED1V01Y201105ICR019

  • Wacholder N. (2011). Interactive query formulation. Annual Review of Information Science and Technology. 45:1. (157-196). Online publication date: 1-Jan-2011.

    /doi/10.5555/2766865.2766876

  • Wacholder N. (2013). Interactive query formulation. Annual Review of Information Science and Technology. 10.1002/aris.2011.1440450111. 45:1. (157-196). Online publication date: 1-Jan-2011.

    https://asistdl.onlinelibrary.wiley.com/doi/10.1002/aris.2011.1440450111

  • Cheng J, Hu X and Heidorn P. (2011). New measures for the evaluation of interactive information retrieval systems: Normalized task completion time and normalized user effectiveness. Proceedings of the American Society for Information Science and Technology. 10.1002/meet.14504701144. 47:1. (1-9). Online publication date: 1-Nov-2010.

    http://doi.wiley.com/10.1002/meet.14504701144

  • Hauff C, Kelly D and Azzopardi L. A comparison of user and system query performance predictions. Proceedings of the 19th ACM international conference on Information and knowledge management. (979-988).

    https://doi.org/10.1145/1871437.1871562

  • Cheng J, Hu X and Heidorn P. New measures for the evaluation of interactive information retrieval systems. Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem - Volume 47. (1-9).

    /doi/10.5555/1920331.1920436

  • Liu Y. On the potential search effectiveness of MeSH (medical subject headings) terms. Proceedings of the third symposium on Information interaction in context. (225-234).

    https://doi.org/10.1145/1840784.1840817

  • Sondhi P, Chandrasekar R and Rounthwaite R. Using query context models to construct topical search engines. Proceedings of the third symposium on Information interaction in context. (75-84).

    https://doi.org/10.1145/1840784.1840797

  • Thomas P, Noack K and Paris C. Evaluating interfaces for government metasearch. Proceedings of the third symposium on Information interaction in context. (65-74).

    https://doi.org/10.1145/1840784.1840796

  • Smucker M and Jethani C. Human performance and retrieval precision revisited. Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. (595-602).

    https://doi.org/10.1145/1835449.1835549

  • Sanderson M, Paramita M, Clough P and Kanoulas E. Do user preferences and evaluation measures line up?. Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. (555-562).

    https://doi.org/10.1145/1835449.1835542

  • Tamine-Lechani L, Boughanem M and Daoud M. (2009). Evaluation of contextual information retrieval effectiveness: overview of issues and research. Knowledge and Information Systems. 10.1007/s10115-009-0231-1. 24:1. (1-34). Online publication date: 1-Jul-2010.

    http://link.springer.com/10.1007/s10115-009-0231-1

  • Kelly D, Fu X and Shah C. (2010). Effects of position and number of relevant documents retrieved on users' evaluations of system performance. ACM Transactions on Information Systems. 28:2. (1-29). Online publication date: 1-May-2010.

    https://doi.org/10.1145/1740592.1740597

  • Al‐Maskari A and Sanderson M. (2010). A review of factors influencing user satisfaction in information retrieval. Journal of the American Society for Information Science and Technology. 10.1002/asi.21300. 61:5. (859-868). Online publication date: 1-May-2010.

    https://onlinelibrary.wiley.com/doi/10.1002/asi.21300

  • He J, Shu B, Li X and Yan H. (2010). Effective Time Ratio: A Measure for Web Search Engines with Document Snippets. Information Retrieval Technology. 10.1007/978-3-642-17187-1_7. (73-84).

    http://link.springer.com/10.1007/978-3-642-17187-1_7

  • Little S, Llorente A and Rüger S. (2010). An Overview of Evaluation Campaigns in Multimedia Retrieval. ImageCLEF. 10.1007/978-3-642-15181-1_27. (507-525).

    https://link.springer.com/10.1007/978-3-642-15181-1_27

  • Price S, Lykke Nielsen M, Delcambre L, Vedsted P and Steinhauer J. (2009). Using semantic components to search for domain-specific documents. Information Systems. 34:8. (724-752). Online publication date: 1-Dec-2009.

    /doi/10.5555/1595075.1595912

  • Price S, Lykke Nielsen M, Delcambre L, Vedsted P and Steinhauer J. (2009). Using semantic components to search for domain-specific documents: An evaluation from the system perspective and the user perspective. Information Systems. 10.1016/j.is.2009.04.005. 34:8. (724-752). Online publication date: 1-Dec-2009.

    https://linkinghub.elsevier.com/retrieve/pii/S0306437909000428

  • Bailer W and Rehatschek H. Comparing fact finding tasks and user survey for evaluating a video browsing tool. Proceedings of the 17th ACM international conference on Multimedia. (741-744).

    https://doi.org/10.1145/1631272.1631402

  • Keskustalo H, Järvelin K, Pirkola A, Sharma T and Lykke M. Test Collection-Based IR Evaluation Needs Extension toward Sessions --- A Case of Extremely Short Queries. Proceedings of the 5th Asia Information Retrieval Symposium on Information Retrieval Technology. (63-74).

    https://doi.org/10.1007/978-3-642-04769-5_6

  • Scholer F and Turpin A. Metric and Relevance Mismatch in Retrieval Evaluation. Proceedings of the 5th Asia Information Retrieval Symposium on Information Retrieval Technology. (50-62).

    https://doi.org/10.1007/978-3-642-04769-5_5

  • Turpin A, Scholer F, Jarvelin K, Wu M and Culpepper J. Including summaries in system evaluation. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. (508-515).

    https://doi.org/10.1145/1571941.1572029

  • Lin J, Wu P and Abels E. (2008). Toward automatic facet analysis and need negotiation. ACM Transactions on Information Systems. 27:1. (1-42). Online publication date: 1-Dec-2008.

    https://doi.org/10.1145/1416950.1416956

  • Voorhees E. (2008). On test collections for adaptive information retrieval. Information Processing and Management: an International Journal. 44:6. (1879-1885). Online publication date: 1-Nov-2008.

    https://doi.org/10.1016/j.ipm.2007.12.011

  • Hubmann-Haidvogel A, Scharl A and Weichselbraun A. Tightly coupled views for navigating content repositories. Companion Proceedings of the XIV Brazilian Symposium on Multimedia and the Web. (5-8).

    https://doi.org/10.1145/1809980.1809983

  • Scholer F and Turpin A. Relevance thresholds in system evaluations. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. (693-694).

    https://doi.org/10.1145/1390334.1390455

  • Smith C and Kantor P. User adaptation. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. (147-154).

    https://doi.org/10.1145/1390334.1390362

  • Al-Maskari A, Sanderson M, Clough P and Airio E. The good and the bad system. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. (59-66).

    https://doi.org/10.1145/1390334.1390347

  • White R, Richardson M, Bilenko M and Heath A. Enhancing web search by promoting multiple search engine use. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. (43-50).

    https://doi.org/10.1145/1390334.1390344

  • Lin J and Smucker M. How do users find things with PubMed?. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. (19-26).

    https://doi.org/10.1145/1390334.1390340

  • Belkin N. (2008). Some(what) grand challenges for information retrieval. ACM SIGIR Forum. 42:1. (47-54). Online publication date: 1-Jun-2008.

    https://doi.org/10.1145/1394251.1394261

  • Fuhr N. (2008). A probability ranking principle for interactive information retrieval. Information Retrieval. 10.1007/s10791-008-9045-0. 11:3. (251-265). Online publication date: 1-Jun-2008.

    http://link.springer.com/10.1007/s10791-008-9045-0

  • Smith C. (2009). Searcher adaptation: A response to topic difficulty. Proceedings of the American Society for Information Science and Technology. 10.1002/meet.2008.1450450381. 45:1. (1-10). Online publication date: 1-Jan-2008.

    https://asistdl.onlinelibrary.wiley.com/doi/10.1002/meet.2008.1450450381

  • Ruthven I. (2009). Interactive information retrieval. Annual Review of Information Science and Technology. 10.1002/aris.2008.1440420109. 42:1. (43-91). Online publication date: 1-Jan-2008.

    https://asistdl.onlinelibrary.wiley.com/doi/10.1002/aris.2008.1440420109

  • Price S, Nielsen M, Delcambre L and Vedsted P. Semantic components enhance retrieval of domain-specific documents. Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. (429-438).

    https://doi.org/10.1145/1321440.1321502

  • Shami N, Yuan Y, Cosley D, Xia L and Gay G. That's what friends are for. Proceedings of the 2007 ACM International Conference on Supporting Group Work. (379-382).

    https://doi.org/10.1145/1316624.1316681

  • Fuhr N, Tsakonas G, Aalberg T, Agosti M, Hansen P, Kapidakis S, Klas C, Kovács L, Landoni M, Micsik A, Papatheodorou C, Peters C and Sølvberg I. (2007). Evaluation of digital libraries. International Journal on Digital Libraries. 8:1. (21-38). Online publication date: 25-Oct-2007.

    https://doi.org/10.1007/s00799-007-0011-z

  • Huffman S and Hochster M. How well does result relevance predict session satisfaction?. Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. (567-574).

    https://doi.org/10.1145/1277741.1277839

  • Wacholder N, Kelly D, Kantor P, Rittman R, Sun Y, Bai B, Small S, Yamrom B and Strzalkowski T. (2007). A model for quantitative evaluation of an end‐to‐end question‐answering system. Journal of the American Society for Information Science and Technology. 10.1002/asi.20560. 58:8. (1082-1099). Online publication date: 1-Jun-2007.

    https://onlinelibrary.wiley.com/doi/10.1002/asi.20560

  • Melamed D, Shapira B and Elovici Y. (2007). MarCol. IEEE Intelligent Systems. 22:3. (74-78). Online publication date: 1-May-2007.

    https://doi.org/10.1109/MIS.2007.57

  • Crane G, Bamman D, Cerrato L, Jones A, Mimno D, Packel A, Sculley D and Weaver G. Beyond digital incunabula. Proceedings of the 10th European conference on Research and Advanced Technology for Digital Libraries. (353-366).

    https://doi.org/10.1007/11863878_30

  • Malik S, Klas C, Fuhr N, Larsen B and Tombros A. Designing a user interface for interactive retrieval of structured documents — lessons learned from the INEX interactive track. Proceedings of the 10th European conference on Research and Advanced Technology for Digital Libraries. (291-302).

    https://doi.org/10.1007/11863878_25

  • Turpin A and Scholer F. User performance versus precision measures for simple search tasks. Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. (11-18).

    https://doi.org/10.1145/1148170.1148176

  • Martins B, Silva M and Chaves M. Challenges and resources for evaluating geographical IR. Proceedings of the 2005 workshop on Geographic information retrieval. (65-69).

    https://doi.org/10.1145/1096985.1097001

  • Turpin A and Hersh W. Do clarity scores for queries correlate with user performance?. Proceedings of the 15th Australasian database conference - Volume 27. (85-91).

    /doi/10.5555/1012294.1012304

  • van Zwol R and van Oostendorp H. (2004). Google’s “I’m Feeling Lucky”, Truly a Gamble?. Web Information Systems – WISE 2004. 10.1007/978-3-540-30480-7_39. (378-389).

    http://link.springer.com/10.1007/978-3-540-30480-7_39

  • Beitzel S, Jensen E, Chowdhury A and Grossman D. Using titles and category names from editor-driven taxonomies for automatic evaluation. Proceedings of the twelfth international conference on Information and knowledge management. (17-23).

    https://doi.org/10.1145/956863.956868

  • Cosley D, Lam S, Albert I, Konstan J and Riedl J. Is seeing believing?. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. (585-592).

    https://doi.org/10.1145/642611.642713

  • Cosley D, Lawrence S and Pennock D. REFEREE. Proceedings of the 28th international conference on Very Large Data Bases. (35-46).

    /doi/10.5555/1287369.1287374

  • Turpin A and Hersh W. User interface effects in past batch versus user experiments. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval. (431-432).

    https://doi.org/10.1145/564376.564479

  • Voorhees E. (2002). The Philosophy of Information Retrieval Evaluation. Evaluation of Cross-Language Information Retrieval Systems. 10.1007/3-540-45691-0_34. (355-370).

    http://link.springer.com/10.1007/3-540-45691-0_34