• Godinez L and Mustafaraj E. YouTube and Conspiracy Theories: A Longitudinal Audit of Information Panels. Proceedings of the 35th ACM Conference on Hypertext and Social Media. (273-284).

    https://doi.org/10.1145/3648188.3675128

  • Nasuto A, Rowe F and Lee C. (2024). Understanding anti-immigration sentiment spreading on Twitter. PLOS ONE. 10.1371/journal.pone.0307917. 19:9. (e0307917).

    https://dx.plos.org/10.1371/journal.pone.0307917

  • Hussna A, Alam M, Islam R, Alkhamees B, Hassan M and Uddin M. (2024). Dissecting the Infodemic: An In-Depth Analysis of COVID-19 Misinformation Detection on X (Formerly Twitter) Utilizing Machine Learning and Deep Learning Techniques. Heliyon. 10.1016/j.heliyon.2024.e37760. (e37760). Online publication date: 1-Sep-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S2405844024137917

  • Lyall B and Marple P. (2024). Parliament, petitions and pandemic: Conspiracism in Australia's federal e‐petitions system, 2020−2021. Policy & Internet. 10.1002/poi3.384. 16:3. (485-508). Online publication date: 1-Sep-2024.

    https://onlinelibrary.wiley.com/doi/10.1002/poi3.384

  • Wu F, Chen G, Cao J, Yan Y and Li Z. (2024). Multimodal Hateful Meme Classification Based on Transfer Learning and a Cross-Mask Mechanism. Electronics. 10.3390/electronics13142780. 13:14. (2780).

    https://www.mdpi.com/2079-9292/13/14/2780

  • McKenzie A, Avshman E, Shegog R, Savas L and Shay L. (2024). Facebook’s shared articles on HPV vaccination: analysis of persuasive strategies. BMC Public Health. 10.1186/s12889-024-19099-0. 24:1.

    https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-024-19099-0

  • Hassoun A, Borenstein G, Osborn K, McAuliffe J and Goldberg B. (2024). Sowing “seeds of doubt”: Cottage industries of election and medical misinformation in Brazil and the United States. New Media & Society. 10.1177/14614448241255379.

    https://journals.sagepub.com/doi/10.1177/14614448241255379

  • De Clerck B, Fernandez Toledano J, Van Utterbeeck F and Rocha L. (2024). Detecting coordinated and bot-like behavior in Twitter: the Jürgen Conings case. EPJ Data Science. 10.1140/epjds/s13688-024-00477-y. 13:1.

    https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-024-00477-y

  • DeVerna M, Aiyappa R, Pacheco D, Bryden J, Menczer F and Guarino S. (2024). Identifying and characterizing superspreaders of low-credibility content on Twitter. PLOS ONE. 10.1371/journal.pone.0302201. 19:5. (e0302201).

    https://dx.plos.org/10.1371/journal.pone.0302201

  • Ng L, Kloo I, Clark S and Carley K. (2024). An exploratory analysis of COVID bot vs human disinformation dissemination stemming from the Disinformation Dozen on Telegram. Journal of Computational Social Science. 10.1007/s42001-024-00253-y. 7:1. (695-720). Online publication date: 1-Apr-2024.

    https://link.springer.com/10.1007/s42001-024-00253-y

  • Sharma S, Sharma R and Datta A. (Mis)leading the COVID-19 Vaccination Discourse on Twitter: An Exploratory Study of Infodemic Around the Pandemic. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2022.3225216. 11:1. (352-362).

    https://ieeexplore.ieee.org/document/9976471/

  • Bârgăoanu A, Buturoiu R and Durach F. (2024). Predictors of COVID-19 Vaccine Acceptance: The Role of Trust and the Influence of Social Media. Social Work in Public Health. 10.1080/19371918.2024.2316869. 39:1. (20-35). Online publication date: 2-Jan-2024.

    https://www.tandfonline.com/doi/full/10.1080/19371918.2024.2316869

  • Ahmed W, Önkal D, Das R, Krishnan S, Olan F, Hardey M and Fenton A. Developing Techniques to Support Technological Solutions to Disinformation by Analyzing Four Conspiracy Networks During COVID-19. IEEE Transactions on Engineering Management. 10.1109/TEM.2023.3273191. 71. (13327-13344).

    https://ieeexplore.ieee.org/document/10136885/

  • Panizza F, Ronzani P, Morisseau T, Mattavelli S and Martini C. (2023). How do online users respond to crowdsourced fact-checking?. Humanities and Social Sciences Communications. 10.1057/s41599-023-02329-y. 10:1.

    https://www.nature.com/articles/s41599-023-02329-y

  • Ezzeddine F, Ayoub O, Giordano S, Nogara G, Sbeity I, Ferrara E and Luceri L. (2023). Exposing influence campaigns in the age of LLMs: a behavioral-based AI approach to detecting state-sponsored trolls. EPJ Data Science. 10.1140/epjds/s13688-023-00423-4. 12:1.

    https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-023-00423-4

  • Pierri F, Luceri L, Chen E and Ferrara E. (2023). How does Twitter account moderation work? Dynamics of account creation and suspension on Twitter during major geopolitical events. EPJ Data Science. 10.1140/epjds/s13688-023-00420-7. 12:1.

    https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-023-00420-7

  • Albert C, Aleroud A, Yang Y, Melhem A and Rutland J. (2023). Twitter Propaganda Operations: Analyzing Sociopolitical Issues in Saudi Arabia. Social Media + Society. 10.1177/20563051231216964. 9:4. Online publication date: 1-Oct-2023.

    https://journals.sagepub.com/doi/10.1177/20563051231216964

  • Rathje S, Robertson C, Brady W and Van Bavel J. (2023). People Think That Social Media Platforms Do (but Should Not) Amplify Divisive Content. Perspectives on Psychological Science. 10.1177/17456916231190392.

    http://journals.sagepub.com/doi/10.1177/17456916231190392

  • Gatta V, Luceri L, Fabbri F and Ferrara E. The Interconnected Nature of Online Harm and Moderation. Proceedings of the 34th ACM Conference on Hypertext and Social Media. (1-10).

    https://doi.org/10.1145/3603163.3609058

  • Schafer J, Starbird K and Rosner D. Participatory Design and Power in Misinformation, Disinformation, and Online Hate Research. Proceedings of the 2023 ACM Designing Interactive Systems Conference. (1724-1739).

    https://doi.org/10.1145/3563657.3596119

  • Kareklas I, Bhattacharya D, Muehling D and Kisekka V. (2023). Reexamining health messages in the political age: The politicization of the COVID ‐19 pandemic and its detrimental effects on vaccine hesitancy . Journal of Consumer Affairs. 10.1111/joca.12553. 57:3. (1120-1150). Online publication date: 1-Jul-2023.

    https://onlinelibrary.wiley.com/doi/10.1111/joca.12553

  • Pierri F, DeVerna M, Yang K, Axelrod D, Bryden J and Menczer F. (2023). One Year of COVID-19 Vaccine Misinformation on Twitter: Longitudinal Study. Journal of Medical Internet Research. 10.2196/42227. 25. (e42227).

    https://www.jmir.org/2023/1/e42227

  • Luceri L, Panté V, Burghardt K and Ferrara E. (2023). Unmasking the Web of Deceit: Uncovering Coordinated Activity to Expose Information Operations on Twitter. SSRN Electronic Journal. 10.2139/ssrn.4614245.

    https://www.ssrn.com/abstract=4614245

  • Shiau Ching Wong S, Tan J, Gan K and Tan T. (2022). Text Analytics of Vaccine Myths on Reddit. Handbook of Research on Artificial Intelligence Applications in Literary Works and Social Media. 10.4018/978-1-6684-6242-3.ch013. (277-301).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-6242-3.ch013