• Zhao Y, Du J and Chen J. (2024). Scenario-based Adaptations of Differential Privacy: A Technical Survey. ACM Computing Surveys. 10.1145/3651153. 56:8. (1-39). Online publication date: 31-Aug-2024.

    https://dl.acm.org/doi/10.1145/3651153

  • Sun H, Zhu T, Li J, Ji S and Zhou W. Attribute-Based Membership Inference Attacks and Defenses on GANs. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2023.3305591. 21:4. (2376-2393).

    https://ieeexplore.ieee.org/document/10221704/

  • Zhang X, Cai Y, Liu F and Zhou F. (2024). How to dissolve the “privacy paradox” in social networks? A game approach based on privacy calculus. Kybernetes. 10.1108/K-03-2024-0544.

    https://www.emerald.com/insight/content/doi/10.1108/K-03-2024-0544/full/html

  • Zhou W, Zhu T, Ye D, Ren W and Choo K. A Concurrent Federated Reinforcement Learning for IoT Resources Allocation With Local Differential Privacy. IEEE Internet of Things Journal. 10.1109/JIOT.2023.3312118. 11:4. (6537-6550).

    https://ieeexplore.ieee.org/document/10239527/

  • Xu Y, Xiao M, Wu J, Tan H and Gao G. (2023). A Personalized Privacy Preserving Mechanism for Crowdsourced Federated Learning. IEEE Transactions on Mobile Computing. 23:2. (1568-1585). Online publication date: 1-Feb-2024.

    https://doi.org/10.1109/TMC.2023.3237636

  • Xu H, Zhu T, Zhang L, Zhou W and Yu P. (2023). Machine Unlearning: A Survey. ACM Computing Surveys. 56:1. (1-36). Online publication date: 31-Jan-2024.

    https://doi.org/10.1145/3603620

  • Shen Y, Shepherd C, Ahmed C, Shen S and Yu S. SGD3QN: Joint Stochastic Games and Dueling Double Deep Q-Networks for Defending Malware Propagation in Edge Intelligence-Enabled Internet of Things. IEEE Transactions on Information Forensics and Security. 10.1109/TIFS.2024.3420233. 19. (6978-6990).

    https://ieeexplore.ieee.org/document/10574836/

  • Li J, Lu L and Moradpoor N. (2024). A Novel Differentially Private Online Learning Algorithm for Group Lasso in Big Data. IET Information Security. 10.1049/2024/5553292. 2024:1. Online publication date: 1-Jan-2024.

    https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/2024/5553292

  • Das S and Mishra S. (2024). Advances in Differential Privacy and Differentially Private Machine Learning. Information Technology Security. 10.1007/978-981-97-0407-1_7. (147-188).

    https://link.springer.com/10.1007/978-981-97-0407-1_7

  • Xiao M, Li M and Zhang J. (2023). Locally Differentially Private Personal Data Markets Using Contextual Dynamic Pricing Mechanism. IEEE Transactions on Dependable and Secure Computing. 20:6. (5043-5055). Online publication date: 1-Nov-2023.

    https://doi.org/10.1109/TDSC.2023.3239615

  • Monteiro D, Yu Y, Zisman A and Nuseibeh B. Adaptive Observability for Forensic-Ready Microservice Systems. IEEE Transactions on Services Computing. 10.1109/TSC.2023.3290474. 16:5. (3196-3209).

    https://ieeexplore.ieee.org/document/10168252/

  • Zhou S, Liu C, Ye D, Zhu T, Zhou W and Yu P. (2022). Adversarial Attacks and Defenses in Deep Learning: From a Perspective of Cybersecurity. ACM Computing Surveys. 55:8. (1-39). Online publication date: 31-Aug-2023.

    https://doi.org/10.1145/3547330

  • Zhu T, Ye D, Cheng Z, Zhou W and Yu P. Learning Games for Defending Advanced Persistent Threats in Cyber Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 10.1109/TSMC.2022.3211866. 53:4. (2410-2422).

    https://ieeexplore.ieee.org/document/9923774/

  • Zhang L, Zhu T, Xiong P, Zhou W and Yu P. (2023). A Robust Game-Theoretical Federated Learning Framework With Joint Differential Privacy. IEEE Transactions on Knowledge and Data Engineering. 35:4. (3333-3346). Online publication date: 1-Apr-2023.

    https://doi.org/10.1109/TKDE.2021.3140131

  • Sun H, Zhu T, Zhang Z, Jin D, Xiong P and Zhou W. Adversarial Attacks Against Deep Generative Models on Data: A Survey. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3130903. 35:4. (3367-3388).

    https://ieeexplore.ieee.org/document/9627776/

  • Li J, Liu L, Zhang S, Ma S, Le T and Liu J. (2022). Causal heterogeneity discovery by bottom-up pattern search for personalised decision making. Applied Intelligence. 53:7. (8180-8194). Online publication date: 1-Apr-2023.

    https://doi.org/10.1007/s10489-022-03860-2

  • Zhao B, Li X, Liu X, Pei Q, Li Y and Deng R. (2023). CrowdFA: A Privacy-Preserving Mobile Crowdsensing Paradigm via Federated Analytics. IEEE Transactions on Information Forensics and Security. 18. (5416-5430). Online publication date: 1-Jan-2023.

    https://doi.org/10.1109/TIFS.2023.3308714

  • Zhang L, Zhu T, Hussain F, Ye D and Zhou W. A Game-Theoretic Method for Defending Against Advanced Persistent Threats in Cyber Systems. IEEE Transactions on Information Forensics and Security. 10.1109/TIFS.2022.3229595. 18. (1349-1364).

    https://ieeexplore.ieee.org/document/9987540/

  • Sreevallabh Chivukula A, Yang X, Liu B, Liu W and Zhou W. (2023). Game Theoretical Adversarial Deep Learning. Adversarial Machine Learning. 10.1007/978-3-030-99772-4_4. (73-149).

    https://link.springer.com/10.1007/978-3-030-99772-4_4

  • Pinheiro P and Cavique L. Uplift Modeling Using the Transformed Outcome Approach. Progress in Artificial Intelligence. (623-635).

    https://doi.org/10.1007/978-3-031-16474-3_51