• Färber M, Lamprecht D and Susanti Y. (2025). AutoRDF2GML: Facilitating RDF Integration in Graph Machine Learning. The Semantic Web – ISWC 2024. 10.1007/978-3-031-77847-6_7. (115-133).

    https://link.springer.com/10.1007/978-3-031-77847-6_7

  • Gergin B and Chelmis C. (2025). SparkKG-ML: A Library to Facilitate End–to–End Large–Scale Machine Learning Over Knowledge Graphs in Python. The Semantic Web – ISWC 2024. 10.1007/978-3-031-77847-6_1. (3-19).

    https://link.springer.com/10.1007/978-3-031-77847-6_1

  • Abdallah H and Mansour E. (2023). Towards a GML-Enabled Knowledge Graph Platform 2023 IEEE 39th International Conference on Data Engineering (ICDE). 10.1109/ICDE55515.2023.00225. 979-8-3503-2227-9. (2946-2954).

    https://ieeexplore.ieee.org/document/10184515/

  • Stodt F, Stodt J and Reich C. (2023). Blockchain Secured Dynamic Machine Learning Pipeline for Manufacturing. Applied Sciences. 10.3390/app13020782. 13:2. (782).

    https://www.mdpi.com/2076-3417/13/2/782

  • Draschner C, Jabeen H and Lehmann J. (2022). Ethical and Sustainability Considerations for Knowledge Graph based Machine Learning 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). 10.1109/AIKE55402.2022.00015. 978-1-6654-7120-6. (53-60).

    https://ieeexplore.ieee.org/document/9939282/

  • Draschner C, Jabeen H and Lehmann J. (2022). SimE4KG: Distributed and Explainable Multi-Modal Semantic Similarity Estimation for Knowledge Graphs 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). 10.1109/AIKE55402.2022.00007. 978-1-6654-7120-6. (1-8).

    https://ieeexplore.ieee.org/document/9939143/