• Wei X, Chen G, Zhu Y, Hu F, Zhang C, Han Z and Wang W. FedHGL: Cross-Institutional Federated Heterogeneous Graph Learning for IoT. IEEE Internet of Things Journal. 10.1109/JIOT.2024.3368054. 11:15. (25590-25599).

    https://ieeexplore.ieee.org/document/10443274/

  • Huang H, Zhuang W, Chen C and Lyu L. (2024). FedMef: Towards Memory-Efficient Federated Dynamic Pruning 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR52733.2024.02601. 979-8-3503-5300-6. (27538-27547).

    https://ieeexplore.ieee.org/document/10655948/

  • Hu M, Zhou P, Yue Z, Ling Z, Huang Y, Li A, Liu Y, Lian X and Chen M. (2024). FedCross: Towards Accurate Federated Learning via Multi-Model Cross-Aggregation 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00170. 979-8-3503-1715-2. (2137-2150).

    https://ieeexplore.ieee.org/document/10597740/

  • Qiao P, Zhao K, Bi B, Zhang Z, Yuan Y and Wang G. (2024). Feed: Towards Personalization-Effective Federated Learning 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00144. 979-8-3503-1715-2. (1779-1791).

    https://ieeexplore.ieee.org/document/10597724/

  • Song C, Chen X, Zhu W, Zhou Y, Gu X and Li B. (2024). Meta-Knowledge Enhanced Data Augmentation for Federated Person Re-Identification ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 10.1109/ICASSP48485.2024.10447543. 979-8-3503-4485-1. (8901-8905).

    https://ieeexplore.ieee.org/document/10447543/

  • Liu F, Ye M and Du B. (2024). Domain generalized federated learning for Person Re-identification. Computer Vision and Image Understanding. 10.1016/j.cviu.2024.103969. 241. (103969). Online publication date: 1-Apr-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S107731422400050X

  • Ye M, Fang X, Du B, Yuen P and Tao D. (2023). Heterogeneous Federated Learning: State-of-the-art and Research Challenges. ACM Computing Surveys. 56:3. (1-44). Online publication date: 31-Mar-2024.

    https://doi.org/10.1145/3625558

  • Kansal K, Wong Y and Kankanhalli M. (2024). Privacy-Enhancing Person Re-identification Framework – A Dual-Stage Approach 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 10.1109/WACV57701.2024.00835. 979-8-3503-1892-0. (8528-8537).

    https://ieeexplore.ieee.org/document/10484166/

  • Ma W, Wu X, Zhao S, Zhou T, Guo D, Gu L, Cai Z and Wang M. FedSH: Towards Privacy-Preserving Text-Based Person Re-Identification. IEEE Transactions on Multimedia. 10.1109/TMM.2023.3330091. 26. (5065-5077).

    https://ieeexplore.ieee.org/document/10310121/

  • Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G and Piccialli F. (2024). Model aggregation techniques in federated learning: A comprehensive survey. Future Generation Computer Systems. 10.1016/j.future.2023.09.008. 150. (272-293). Online publication date: 1-Jan-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0167739X23003333

  • Xu Y, Wang Z, Kua J, Luo H, Guo R and Liu X. (2023). Personalized Federated Learning Framework for Person Re-identification in MEC-enabled UAV Delivery Services 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). 10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00086. 979-8-3503-3001-4. (1020-1027).

    https://ieeexplore.ieee.org/document/10466911/

  • Weng J, Hu K, Yao T, Wang J and Wang Z. (2023). Federated Unsupervised Cluster-Contrastive learning for person Re-identification: A coarse-to-fine approach. Computer Vision and Image Understanding. 10.1016/j.cviu.2023.103831. 237. (103831). Online publication date: 1-Dec-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S1077314223002114

  • Shanmugarasa Y, Paik H, Kanhere S and Zhu L. (2023). A systematic review of federated learning from clients’ perspective: challenges and solutions. Artificial Intelligence Review. 10.1007/s10462-023-10563-8. 56:S2. (1773-1827). Online publication date: 1-Nov-2023.

    https://link.springer.com/10.1007/s10462-023-10563-8

  • Zhang P, Yan H, Wu W and Wang S. Improving Federated Person Re-Identification through Feature-Aware Proximity and Aggregation. Proceedings of the 31st ACM International Conference on Multimedia. (2498-2506).

    https://doi.org/10.1145/3581783.3612350

  • Zhang Y, Liu L and Liu L. Cuing Without Sharing: A Federated Cued Speech Recognition Framework via Mutual Knowledge Distillation. Proceedings of the 31st ACM International Conference on Multimedia. (8781-8789).

    https://doi.org/10.1145/3581783.3612134

  • Zhuang W, Wen Y, Lyu L and Zhang S. (2023). MAS: Towards Resource-Efficient Federated Multiple-Task Learning 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 10.1109/ICCV51070.2023.02140. 979-8-3503-0718-4. (23357-23367).

    https://ieeexplore.ieee.org/document/10377844/

  • Yang F, Wang C and Wang Y. (2023). Efficient Model Personalization in Federated Learning via Client-Specific Prompt Generation 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 10.1109/ICCV51070.2023.01755. 979-8-3503-0718-4. (19102-19111).

    https://ieeexplore.ieee.org/document/10377922/

  • Lian F, Huang J, Liu J, Chen G, Zhao J and Kang W. (2023). FedFV: A Personalized Federated Learning Framework for Finger Vein Authentication. Machine Intelligence Research. 10.1007/s11633-022-1341-4. 20:5. (683-696). Online publication date: 1-Oct-2023.

    https://link.springer.com/10.1007/s11633-022-1341-4

  • Park S, Han S, Wu F, Kim S, Zhu B, Xie X and Cha M. FedDefender: Client-Side Attack-Tolerant Federated Learning. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (1850-1861).

    https://doi.org/10.1145/3580305.3599346

  • Zhang C, Liu X, Xiang M, Yao A, Fan X and Li G. (2023). Fed4ReID: Federated Learning with Data Augmentation for Person Re-identification Service in Edge Computing 2023 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS60048.2023.00021. 979-8-3503-0485-5. (64-70).

    https://ieeexplore.ieee.org/document/10248272/

  • Girija S, Baker T, Ahmed N, Khedr A, Al Aghbari Z, Jha A, Sobolev K, Asl S and Phan A. (2023). Attribute recognition for person re-identification using federated learning at all-in-edge. Internet of Things. 10.1016/j.iot.2023.100793. 22. (100793). Online publication date: 1-Jul-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2542660523001166

  • Dong C, Zhou J, An Q, Jiang F, Chen S, Pan L and Liu X. (2023). Optimizing Performance in Federated Person Re-Identification through Benchmark Evaluation for Blockchain-Integrated Smart UAV Delivery Systems. Drones. 10.3390/drones7070413. 7:7. (413).

    https://www.mdpi.com/2504-446X/7/7/413

  • Li Q, Wen Z, Wu Z, Hu S, Wang N, Li Y, Liu X and He B. A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3124599. 35:4. (3347-3366).

    https://ieeexplore.ieee.org/document/9599369/

  • Galende B, Mayoral S, García F and Lottmann S. (2023). FLIP: A New Approach for Easing the Use of Federated Learning. Applied Sciences. 10.3390/app13063446. 13:6. (3446).

    https://www.mdpi.com/2076-3417/13/6/3446

  • Zhuang W, Gan X, Wen Y and Zhang S. (2023). Optimizing Performance of Federated Person Re-identification: Benchmarking and Analysis. ACM Transactions on Multimedia Computing, Communications, and Applications. 19:1s. (1-18). Online publication date: 28-Feb-2023.

    https://doi.org/10.1145/3531013

  • Jin H, Bai D, Yao D, Dai Y, Gu L, Yu C and Sun L. Personalized Edge Intelligence via Federated Self-Knowledge Distillation. IEEE Transactions on Parallel and Distributed Systems. 10.1109/TPDS.2022.3225185. 34:2. (567-580).

    https://ieeexplore.ieee.org/document/9964434/

  • Liu D, Dang Z, Peng C, Zheng Y, Li S, Wang N and Gao X. FedForgery: Generalized Face Forgery Detection With Residual Federated Learning. IEEE Transactions on Information Forensics and Security. 10.1109/TIFS.2023.3293951. 18. (4272-4284).

    https://ieeexplore.ieee.org/document/10177776/

  • Luo Y, Lu T, Chang S and Wang B. (2023). Improving Federated Learning on Heterogeneous Data via Serial Pipeline Training and Global Knowledge Regularization 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS). 10.1109/ICPADS56603.2022.00115. 978-1-6654-7315-6. (851-858).

    https://ieeexplore.ieee.org/document/10077894/

  • Cheng X, Shi F, Liu Y, Zhou J, Liu X and Huang L. A Class-Imbalanced Heterogeneous Federated Learning Model for Detecting Icing on Wind Turbine Blades. IEEE Transactions on Industrial Informatics. 10.1109/TII.2022.3167467. 18:12. (8487-8497).

    https://ieeexplore.ieee.org/document/9757845/

  • Weng J, Hu K, Yao T, Wang J and Wang Z. (2022). Robust Knowledge Adaptation for Federated Unsupervised Person ReID 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA). 10.1109/DICTA56598.2022.10034631. 978-1-6654-5642-5. (1-8).

    https://ieeexplore.ieee.org/document/10034631/

  • Wu D, Ullah R, Harvey P, Kilpatrick P, Spence I and Varghese B. FedAdapt: Adaptive Offloading for IoT Devices in Federated Learning. IEEE Internet of Things Journal. 10.1109/JIOT.2022.3176469. 9:21. (20889-20901).

    https://ieeexplore.ieee.org/document/9778210/

  • Liu J, Zhuang W, Wen Y, Huang J and Lin W. (2022). Optimizing Federated Unsupervised Person Re-identification via Camera-aware Clustering 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). 10.1109/MMSP55362.2022.9949249. 978-1-6654-7189-3. (1-6).

    https://ieeexplore.ieee.org/document/9949249/

  • Hu S, Li Y, Liu X, Li Q, Wu Z and He B. (2022). The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems. ACM Transactions on Intelligent Systems and Technology. 13:4. (1-32). Online publication date: 31-Aug-2022.

    https://doi.org/10.1145/3510540

  • Li Z, Li Y and Yu S. (2022). FedGait: A Benchmark for Federated Gait Recognition 2022 26th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR56361.2022.9956474. 978-1-6654-9062-7. (1371-1377).

    https://ieeexplore.ieee.org/document/9956474/

  • Zhuang W, Gan X, Wen Y and Zhang S. EasyFL: A Low-Code Federated Learning Platform for Dummies. IEEE Internet of Things Journal. 10.1109/JIOT.2022.3143842. 9:15. (13740-13754).

    https://ieeexplore.ieee.org/document/9684558/

  • Zhuang W, Gan X, Zhang X, Wen Y, Zhang S and Yi S. (2022). Federated Unsupervised Domain Adaptation for Face Recognition 2022 IEEE International Conference on Multimedia and Expo (ICME). 10.1109/ICME52920.2022.9859587. 978-1-6654-8563-0. (1-6).

    https://ieeexplore.ieee.org/document/9859587/

  • Zhu W, Wang C, Tseng K, Lai S and Wang B. (2022). Local-Adaptive Face Recognition via Graph-based Meta-Clustering and Regularized Adaptation 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR52688.2022.01966. 978-1-6654-6946-3. (20269-20278).

    https://ieeexplore.ieee.org/document/9879723/

  • Zhang L, Shen L, Ding L, Tao D and Duan L. (2022). Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR52688.2022.00993. 978-1-6654-6946-3. (10164-10173).

    https://ieeexplore.ieee.org/document/9879661/

  • KhoKhar F, Shah J, Khan M, Sharif M, Tariq U and Kadry S. (2022). A review on federated learning towards image processing. Computers and Electrical Engineering. 99:C. Online publication date: 1-Apr-2022.

    https://doi.org/10.1016/j.compeleceng.2022.107818

  • Liu S, Yu J, Deng X and Wan S. FedCPF: An Efficient-Communication Federated Learning Approach for Vehicular Edge Computing in 6G Communication Networks. IEEE Transactions on Intelligent Transportation Systems. 10.1109/TITS.2021.3099368. 23:2. (1616-1629).

    https://ieeexplore.ieee.org/document/9505307/

  • Shang E, Yang Z, Liu H, Du J and Wang X. (2022). FedFR: Evaluation and Selection of Loss Functions for Federated Face Recognition. Collaborative Computing: Networking, Applications and Worksharing. 10.1007/978-3-031-24383-7_6. (95-114).

    https://link.springer.com/10.1007/978-3-031-24383-7_6

  • Chen M, Wu J, Yin Y, Huang Z, Liu Q and Chen E. (2022). Dynamic Clustering Federated Learning for Non-IID Data. Artificial Intelligence. 10.1007/978-3-031-20503-3_10. (119-131).

    https://link.springer.com/10.1007/978-3-031-20503-3_10

  • Han S, Park S, Wu F, Kim S, Wu C, Xie X and Cha M. (2022). FedX: Unsupervised Federated Learning with Cross Knowledge Distillation. Computer Vision – ECCV 2022. 10.1007/978-3-031-20056-4_40. (691-707).

    https://link.springer.com/10.1007/978-3-031-20056-4_40

  • Chen J, Zhang R, Guo J, Fan Y and Cheng X. FedMatch. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (181-190).

    https://doi.org/10.1145/3459637.3482345

  • Li H, Ye M and Du B. WePerson: Learning a Generalized Re-identification Model from All-weather Virtual Data. Proceedings of the 29th ACM International Conference on Multimedia. (3115-3123).

    https://doi.org/10.1145/3474085.3475455

  • Zhuang W, Wen Y and Zhang S. Joint Optimization in Edge-Cloud Continuum for Federated Unsupervised Person Re-identification. Proceedings of the 29th ACM International Conference on Multimedia. (433-441).

    https://doi.org/10.1145/3474085.3475182

  • Zhuang W, Gan X, Wen Y, Zhang S and Yi S. (2021). Collaborative Unsupervised Visual Representation Learning from Decentralized Data 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 10.1109/ICCV48922.2021.00487. 978-1-6654-2812-5. (4892-4901).

    https://ieeexplore.ieee.org/document/9710366/

  • Zhang L, Luo Y, Bai Y, Du B and Duan L. (2021). Federated Learning for Non-IID Data via Unified Feature Learning and Optimization Objective Alignment 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 10.1109/ICCV48922.2021.00438. 978-1-6654-2812-5. (4400-4408).

    https://ieeexplore.ieee.org/document/9710573/

  • Zhang C, Liu X, Xu J, Chen T, Li G, Jiang F and Li X. (2021). An Edge based Federated Learning Framework for Person Re-identification in UAV Delivery Service 2021 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS53863.2021.00070. 978-1-6654-1681-8. (500-505).

    https://ieeexplore.ieee.org/document/9590400/

  • Zhang Z, Wang S, Hong Y, Zhou L and Hao Q. (2021). Distributed Dynamic Map Fusion via Federated Learning for Intelligent Networked Vehicles 2021 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA48506.2021.9561612. 978-1-7281-9077-8. (953-959).

    https://ieeexplore.ieee.org/document/9561612/

  • Chen W and Zhou X. (2021). UCBFed: Using Reinforcement Learning Method to Tackle the Federated Optimization Problem. Distributed Applications and Interoperable Systems. 10.1007/978-3-030-78198-9_7. (99-105).

    https://link.springer.com/10.1007/978-3-030-78198-9_7