• Wen H, Fu W, Chen W, Huan J, Li C and Duan X. Imitation Learning and Teleoperation Shared Control With Unit Tangent Fuzzy Movement Primitives. IEEE Transactions on Fuzzy Systems. 10.1109/TFUZZ.2024.3443713. 32:11. (6252-6266).

    https://ieeexplore.ieee.org/document/10638251/

  • Li Y and Zhang F. Trust-Preserved Human-Robot Shared Autonomy Enabled by Bayesian Relational Event Modeling. IEEE Robotics and Automation Letters. 10.1109/LRA.2024.3438040. 9:11. (10716-10723).

    https://ieeexplore.ieee.org/document/10621608/

  • Habibian S, Alvarez Valdivia A, Blumenschein L and Losey D. (2024). A survey of communicating robot learning during human-robot interaction. The International Journal of Robotics Research. 10.1177/02783649241281369.

    https://journals.sagepub.com/doi/10.1177/02783649241281369

  • Belardinelli A. (2024). Gaze-Based Intention Estimation: Principles, Methodologies, and Applications in HRI. ACM Transactions on Human-Robot Interaction. 13:3. (1-30). Online publication date: 30-Sep-2024.

    https://doi.org/10.1145/3656376

  • Torielli D, Bertoni L, Muratore L and Tsagarakis N. A Laser-Guided Interaction Interface for Providing Effective Robot Assistance to People With Upper Limbs Impairments. IEEE Robotics and Automation Letters. 10.1109/LRA.2024.3430709. 9:9. (7653-7660).

    https://ieeexplore.ieee.org/document/10602529/

  • Methnani L, Chiou M, Dignum V and Theodorou A. (2024). Who’s in Charge Here? A Survey on Trustworthy AI in Variable Autonomy Robotic Systems. ACM Computing Surveys. 56:7. (1-32). Online publication date: 31-Jul-2024.

    https://doi.org/10.1145/3645090

  • Jonnavittula A, Mehta S and Losey D. (2024). SARI: Shared Autonomy across Repeated Interaction. ACM Transactions on Human-Robot Interaction. 13:2. (1-36). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3651994

  • Banerjee B and Baruah M. (2024). Attention-Based Variational Autoencoder Models for Human–Human Interaction Recognition via Generation. Sensors. 10.3390/s24123922. 24:12. (3922).

    https://www.mdpi.com/1424-8220/24/12/3922

  • Kizilkaya B, She C, Zhao G and Ali Imran M. (2024). Intelligent Mode-switching Framework for Teleoperation 2024 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA57147.2024.10611333. 979-8-3503-8457-4. (15692-15698).

    https://ieeexplore.ieee.org/document/10611333/

  • Rysbek Z, Li S, Shervedani A and Žefran M. (2024). Proactive Robot Control for Collaborative Manipulation Using Human Intent 2024 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA57147.2024.10610909. 979-8-3503-8457-4. (3176-3182).

    https://ieeexplore.ieee.org/document/10610909/

  • Angelotti G, Chanel C, Moreira Pinto A, Lounis C, Chauffaut C and Drougard N. Offline Risk-sensitive RL with Partial Observability to Enhance Performance in Human-Robot Teaming. Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems. (58-67).

    /doi/10.5555/3635637.3662852

  • Domínguez-Vidal J, Rodríguez N and Sanfeliu A. (2024). Perception–Intention–Action Cycle in Human–Robot Collaborative Tasks: The Collaborative Lightweight Object Transportation Use-Case. International Journal of Social Robotics. 10.1007/s12369-024-01103-7.

    https://link.springer.com/10.1007/s12369-024-01103-7

  • Cila N, González González I, Jacobs J and Rozendaal M. Bridging HRI Theory and Practice: Design Guidelines for Robot Communication in Dairy Farming. Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. (137-146).

    https://doi.org/10.1145/3610977.3634991

  • Padmanabha A, Gupta J, Chen C, Yang J, Nguyen V, Weber D, Majidi C and Erickson Z. Independence in the Home: A Wearable Interface for a Person with Quadriplegia to Teleoperate a Mobile Manipulator. Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. (542-551).

    https://doi.org/10.1145/3610977.3634964

  • Aronson R and Short E. Intentional User Adaptation to Shared Control Assistance. Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. (4-12).

    https://doi.org/10.1145/3610977.3634953

  • Mehta S, Meng F, Bajcsy A and Losey D. StROL: Stabilized and Robust Online Learning From Humans. IEEE Robotics and Automation Letters. 10.1109/LRA.2024.3354626. 9:3. (2303-2310).

    https://ieeexplore.ieee.org/document/10400903/

  • Hammarbäck J, Alfredson J, Johansson B and Lundberg J. (2024). My synthetic wingman must understand me: modelling intent for future manned–unmanned teaming. Cognition, Technology and Work. 26:1. (107-126). Online publication date: 1-Feb-2024.

    https://doi.org/10.1007/s10111-023-00745-3

  • Wang Y, Praveena P and Gleicher M. A Design Space of Control Coordinate Systems in Telemanipulation. IEEE Access. 10.1109/ACCESS.2024.3397576. 12. (64150-64164).

    https://ieeexplore.ieee.org/document/10521526/

  • Zhao W and Wang H. (2023). An Intention Inference Method for BiGRU Integrating Multi-head Self-Attention in Share Control 2023 China Automation Congress (CAC). 10.1109/CAC59555.2023.10451784. 979-8-3503-0375-9. (7880-7884).

    https://ieeexplore.ieee.org/document/10451784/

  • Hara T, Sato T, Ogata T and Awano H. Uncertainty-Aware Haptic Shared Control With Humanoid Robots for Flexible Object Manipulation. IEEE Robotics and Automation Letters. 10.1109/LRA.2023.3306668. 8:10. (6435-6442).

    https://ieeexplore.ieee.org/document/10224318/

  • ZHANG Q, ZHAO Y, LV W and CHEN M. (2023). Shared control with optimized arbitration for human-machine sequential decision-making. SCIENTIA SINICA Informationis. 10.1360/SSI-2022-0295. 53:9. (1768). Online publication date: 1-Sep-2023.

    https://engine.scichina.com/doi/10.1360/SSI-2022-0295

  • Bozorgi H and Ngo T. (2023). Beyond Shared Autonomy: Joint Perception and Action for Human-In-The-Loop Mobile Robot Navigation Systems. Journal of Intelligent and Robotic Systems. 109:1. Online publication date: 1-Sep-2023.

    https://doi.org/10.1007/s10846-023-01942-y

  • Udupa S, Kamat V and Menassa C. (2021). Shared autonomy in assistive mobile robots: a review. Disability and Rehabilitation: Assistive Technology. 10.1080/17483107.2021.1928778. 18:6. (827-848). Online publication date: 18-Aug-2023.

    https://www.tandfonline.com/doi/full/10.1080/17483107.2021.1928778

  • Sarsenbayeva Z, Van Berkel N, Velloso E, Goncalves J and Kostakos V. (2022). Methodological Standards in Accessibility Research on Motor Impairments: A Survey. ACM Computing Surveys. 55:7. (1-35). Online publication date: 31-Jul-2023.

    https://doi.org/10.1145/3543509

  • Xu B, Liu D, Xue M, Miao M, Hu C and Song A. (2023). Continuous Shared Control of a Mobile Robot with Brain–Computer Interface and Autonomous Navigation for Daily Assistance. Computational and Structural Biotechnology Journal. 10.1016/j.csbj.2023.07.033. Online publication date: 1-Jul-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2001037023002647

  • Jha D, Jain S, Romeres D, Yerazunis W and Nikovski D. (2023). Generalizable Human-Robot Collaborative Assembly Using Imitation Learning and Force Control 2023 European Control Conference (ECC). 10.23919/ECC57647.2023.10178330. 978-3-907144-08-4. (1-8).

    https://ieeexplore.ieee.org/document/10178330/

  • Zhu Y, Yang C, Tu Z, Ling Y and Chen Y. A Haptic Shared Control Architecture for Tracking of a Moving Object. IEEE Transactions on Industrial Electronics. 10.1109/TIE.2022.3189067. 70:5. (5034-5043).

    https://ieeexplore.ieee.org/document/9829019/

  • Pascher M, Gruenefeld U, Schneegass S and Gerken J. How to Communicate Robot Motion Intent: A Scoping Review. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. (1-17).

    https://doi.org/10.1145/3544548.3580857

  • Mehta S, Kim Y, Hoegerman J, Bartlett M and Losey D. (2023). RISO: Combining Rigid Grippers with Soft Switchable Adhesives 2023 IEEE International Conference on Soft Robotics (RoboSoft). 10.1109/RoboSoft55895.2023.10122030. 979-8-3503-3222-3. (1-8).

    https://ieeexplore.ieee.org/document/10122030/

  • Tian R, Tomizuka M, Dragan A and Bajcsy A. Towards Modeling and Influencing the Dynamics of Human Learning. Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. (350-358).

    https://doi.org/10.1145/3568162.3578629

  • Jianhua T, Jiangtao G, Nan G, Siwei F, Shan L and Chun Y. (2023). Human-computer interaction for virtual-real fusion. Journal of Image and Graphics. 10.11834/jig.230020. 28:6. (1513-1542).

    http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=230020

  • Fitzsimons K and Murphey T. (2022). Ergodic Shared Control: Closing the Loop on pHRI Based on Information Encoded in Motion. ACM Transactions on Human-Robot Interaction. 11:4. (1-20). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3526106

  • Tan A and Nejat G. (2022). Enhancing Robot Task Completion Through Environment and Task Inference: A Survey from the Mobile Robot Perspective. Journal of Intelligent and Robotic Systems. 106:4. Online publication date: 1-Dec-2022.

    https://doi.org/10.1007/s10846-022-01776-0

  • Yan P, Guo J and Bai C. A Multi-Level Movement Intention Inference Approach for an Urban Evasive Target With Unknowable Destinations. IEEE Transactions on Vehicular Technology. 10.1109/TVT.2022.3194862. 71:11. (11526-11539).

    https://ieeexplore.ieee.org/document/9844873/

  • Belardinelli A, Kondapally A, Ruiken D, Tanneberg D and Watabe T. (2022). Intention estimation from gaze and motion features for human-robot shared-control object manipulation 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1109/IROS47612.2022.9982249. 978-1-6654-7927-1. (9806-9813).

    https://ieeexplore.ieee.org/document/9982249/

  • Madan R, Jenamani R, Nguyen V, Moustafa A, Hu X, Dimitropoulou K and Bhattacharjee T. (2022). SPARCS: Structuring Physically Assistive Robotics for Caregiving with Stakeholders-in-the-loop 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1109/IROS47612.2022.9981936. 978-1-6654-7927-1. (641-648).

    https://ieeexplore.ieee.org/document/9981936/

  • Zolotas M and Demiris Y. (2022). Disentangled Sequence Clustering for Human Intention Inference 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1109/IROS47612.2022.9981116. 978-1-6654-7927-1. (9814-9820).

    https://ieeexplore.ieee.org/document/9981116/

  • Fontaine M and Nikolaidis S. (2022). Evaluating Human–Robot Interaction Algorithms in Shared Autonomy via Quality Diversity Scenario Generation. ACM Transactions on Human-Robot Interaction. 11:3. (1-30). Online publication date: 30-Sep-2022.

    https://doi.org/10.1145/3476412

  • Ding D, Styler B, Chung C and Houriet A. (2022). Development of a Vision-Guided Shared-Control System for Assistive Robotic Manipulators. Sensors. 10.3390/s22124351. 22:12. (4351).

    https://www.mdpi.com/1424-8220/22/12/4351

  • Maeda G. Blending Primitive Policies in Shared Control for Assisted Teleoperation. 2022 International Conference on Robotics and Automation (ICRA). (9332-9338).

    https://doi.org/10.1109/ICRA46639.2022.9812414

  • Mehta S, Parekh S and Losey D. Learning Latent Actions without Human Demonstrations. 2022 International Conference on Robotics and Automation (ICRA). (7437-7443).

    https://doi.org/10.1109/ICRA46639.2022.9812230

  • Yousefi E, Losey D and Sharf I. Assisting Operators of Articulated Machinery with Optimal Planning and Goal Inference. 2022 International Conference on Robotics and Automation (ICRA). (2832-2838).

    https://doi.org/10.1109/ICRA46639.2022.9811864

  • Jonnavittula A and Losey D. Communicating Robot Conventions through Shared Autonomy. 2022 International Conference on Robotics and Automation (ICRA). (7423-7429).

    https://doi.org/10.1109/ICRA46639.2022.9811674

  • Cila N. Designing Human-Agent Collaborations: Commitment, responsiveness, and support. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. (1-18).

    https://doi.org/10.1145/3491102.3517500

  • Rea D and Seo S. (2022). Still Not Solved: A Call for Renewed Focus on User-Centered Teleoperation Interfaces. Frontiers in Robotics and AI. 10.3389/frobt.2022.704225. 9.

    https://www.frontiersin.org/articles/10.3389/frobt.2022.704225/full

  • Yang C, Zhu Y and Chen Y. A Review of Human–Machine Cooperation in the Robotics Domain. IEEE Transactions on Human-Machine Systems. 10.1109/THMS.2021.3131684. 52:1. (12-25).

    https://ieeexplore.ieee.org/document/9653727/

  • Losey D, Jeon H, Li M, Srinivasan K, Mandlekar A, Garg A, Bohg J and Sadigh D. (2022). Learning latent actions to control assistive robots. Autonomous Robots. 46:1. (115-147). Online publication date: 1-Jan-2022.

    https://doi.org/10.1007/s10514-021-10005-w

  • Dani A. (2022). Human Intent Prediction for Human-Robot Collaboration. Encyclopedia of Complexity and Systems Science. 10.1007/978-3-642-27737-5_709-1. (1-11).

    https://link.springer.com/10.1007/978-3-642-27737-5_709-1

  • Canal G, Torras C and Alenyà G. (2021). Are Preferences Useful for Better Assistance?. ACM Transactions on Human-Robot Interaction. 10:4. (1-19). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3472208

  • Chiou M, Hawes N and Stolkin R. (2021). Mixed-initiative Variable Autonomy for Remotely Operated Mobile Robots. ACM Transactions on Human-Robot Interaction. 10:4. (1-34). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3472206

  • Spatola N and Huguet P. (2021). Cognitive Impact of Anthropomorphized Robot Gaze. ACM Transactions on Human-Robot Interaction. 10:4. (1-14). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3459994

  • Mullen J, Mosier J, Chakrabarti S, Chen A, White T and Losey D. Communicating Inferred Goals With Passive Augmented Reality and Active Haptic Feedback. IEEE Robotics and Automation Letters. 10.1109/LRA.2021.3111055. 6:4. (8522-8529).

    https://ieeexplore.ieee.org/document/9536385/

  • Selvaggio M, Cognetti M, Nikolaidis S, Ivaldi S and Siciliano B. Autonomy in Physical Human-Robot Interaction: A Brief Survey. IEEE Robotics and Automation Letters. 10.1109/LRA.2021.3100603. 6:4. (7989-7996).

    https://ieeexplore.ieee.org/document/9501975/

  • Iregui S, De Schutter J and Aertbelien E. Reconfigurable Constraint-Based Reactive Framework for Assistive Robotics With Adaptable Levels of Autonomy. IEEE Robotics and Automation Letters. 10.1109/LRA.2021.3098950. 6:4. (7397-7405).

    https://ieeexplore.ieee.org/document/9495281/

  • Jonnavittula A and Losey D. Learning to Share Autonomy Across Repeated Interaction. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (1851-1858).

    https://doi.org/10.1109/IROS51168.2021.9636748

  • Aronson R, Almutlak N and Admoni H. Inferring Goals with Gaze during Teleoperated Manipulation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (7307-7314).

    https://doi.org/10.1109/IROS51168.2021.9636551

  • Oh Y, Toussaint M and Mainprice J. Learning to Arbitrate Human and Robot Control using Disagreement between Sub-Policies. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (5305-5311).

    https://doi.org/10.1109/IROS51168.2021.9636049

  • Cabrera M, Dey K, Krishnaswamy K, Bhattacharjee T and Cakmak M. Cursor-based Robot Tele-manipulation through 2D-to-SE2 Interfaces. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (4230-4237).

    https://doi.org/10.1109/IROS51168.2021.9636008

  • Zolotas  M, Wonsick  M, Long  P and Padır  T. (2021). Motion Polytopes in Virtual Reality for Shared Control in Remote Manipulation Applications. Frontiers in Robotics and AI. 10.3389/frobt.2021.730433. 8.

    https://www.frontiersin.org/articles/10.3389/frobt.2021.730433/full

  • Ly K, Poozhiyil M, Pandya H, Neumann G and Kucukyilmaz A. Intent-Aware Predictive Haptic Guidance and its Application to Shared Control Teleoperation. 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). (565-572).

    https://doi.org/10.1109/RO-MAN50785.2021.9515326

  • Goldau F and Frese U. Learning to Map Degrees of Freedom for Assistive User Control. Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference. (132-139).

    https://doi.org/10.1145/3453892.3453895

  • Houtman W, Bijlenga G, Torta E and Molengraft R. (2021). A Probabilistic Model for Real-Time Semantic Prediction of Human Motion Intentions from RGBD-Data. Sensors. 10.3390/s21124141. 21:12. (4141).

    https://www.mdpi.com/1424-8220/21/12/4141

  • Li M, Canberk A, Losey D and Sadigh D. Learning Human Objectives from Sequences of Physical Corrections. 2021 IEEE International Conference on Robotics and Automation (ICRA). (2877-2883).

    https://doi.org/10.1109/ICRA48506.2021.9560829

  • Qiao C, Sakr M, Muelling K and Admoni H. (2021). Learning from Demonstration for Real-Time User Goal Prediction and Shared Assistive Control 2021 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA48506.2021.9560758. 978-1-7281-9077-8. (3270-3275).

    https://ieeexplore.ieee.org/document/9560758/

  • Fuchs S and Belardinelli A. (2021). Gaze-Based Intention Estimation for Shared Autonomy in Pick-and-Place Tasks. Frontiers in Neurorobotics. 10.3389/fnbot.2021.647930. 15.

    https://www.frontiersin.org/articles/10.3389/fnbot.2021.647930/full

  • Meng J, Feng Z, Lang X, Dou S, Ai C and Shao H. (2021). HRCS_EE: a human-robot collaboration system to help the elderly: *Note: Sub-titles are not captured in Xplore and should not be used 2021 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN52387.2021.9534040. 978-1-6654-3900-8. (1-8).

    https://ieeexplore.ieee.org/document/9534040/

  • Lindblom J and Alenljung B. (2020). The ANEMONE: Theoretical Foundations for UX Evaluation of Action and Intention Recognition in Human-Robot Interaction. Sensors. 10.3390/s20154284. 20:15. (4284).

    https://www.mdpi.com/1424-8220/20/15/4284