• Li J, Ni Y, Zhang J, Yu J and He Y. A Contract-Based Privacy-Preserving Longitudinal Data Trading Mechanism for IoT. IEEE Internet of Things Journal. 10.1109/JIOT.2024.3456134. 11:24. (40897-40908).

    https://ieeexplore.ieee.org/document/10669375/

  • Ke W, Liu Y, Wang J, Fang Z, Chi Z, Guo Y, Wang R, Wang P and Crisostomi E. (2024). DecentralDC: Assessing data contribution under decentralized sharing and exchange blockchain. PLOS ONE. 10.1371/journal.pone.0310747. 19:10. (e0310747).

    https://dx.plos.org/10.1371/journal.pone.0310747

  • Si M and Pei J. (2024). Counterfactual Explanation of Shapley Value in Data Coalitions. Proceedings of the VLDB Endowment. 17:11. (3332-3345). Online publication date: 1-Jul-2024.

    https://doi.org/10.14778/3681954.3682004

  • Zhang M, Li X, Ren Y, Luo B, Miao Y, Liu X and Deng R. Privacy-Preserved Data Trading Via Verifiable Data Disturbance. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2023.3323669. 21:4. (3126-3140).

    https://ieeexplore.ieee.org/document/10278454/

  • Zhang M and Pei J. Protecting Data Buyer Privacy in Data Markets. IEEE Internet Computing. 10.1109/MIC.2024.3398626. 28:4. (14-20).

    https://ieeexplore.ieee.org/document/10529533/

  • Ding Y and Tian Y. (2024). Research on Pricing of Data Based on Bi-level Programming Model. Annals of Data Science. 10.1007/s40745-024-00549-w.

    https://link.springer.com/10.1007/s40745-024-00549-w

  • Sun P, Liao G, Chen X and Huang J. A Socially Optimal Data Marketplace With Differentially Private Federated Learning. IEEE/ACM Transactions on Networking. 10.1109/TNET.2024.3351864. 32:3. (2221-2236).

    https://ieeexplore.ieee.org/document/10403801/

  • Fu Y, Miao X, Peng H, Na C, Deng S and Yin J. (2024). Online Query-Based Data Pricing with Time-Discounting Valuations 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00266. 979-8-3503-1715-2. (3449-3461).

    https://ieeexplore.ieee.org/document/10598119/

  • Yang F, Liao X, Lei X, Mu N and Zhang D. Towards Privacy-Preserving and Practical Data Trading for Aggregate Statistic. IEEE Transactions on Sustainable Computing. 10.1109/TSUSC.2023.3331179. 9:3. (452-463).

    https://ieeexplore.ieee.org/document/10316186/

  • Luo X, Pei J, Xu C, Zhang W and Xu J. (2024). Fast Shapley Value Computation in Data Assemblage Tasks as Cooperative Simple Games. Proceedings of the ACM on Management of Data. 2:1. (1-28). Online publication date: 12-Mar-2024.

    https://doi.org/10.1145/3639311

  • Xiao S, Li Q, Chen Y and Zhao J. (2024). MDB: An Evaluative and Incentivizing Model Trading Market. Intelligent Systems and Applications. 10.1007/978-3-031-66329-1_24. (359-380).

    https://link.springer.com/10.1007/978-3-031-66329-1_24

  • Xiao M, Li M and Zhang J. Locally Differentially Private Personal Data Markets Using Contextual Dynamic Pricing Mechanism. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2023.3239615. 20:6. (5043-5055).

    https://ieeexplore.ieee.org/document/10025585/

  • Cai Z, Zheng X, Wang J and He Z. Private Data Trading Towards Range Counting Queries in Internet of Things. IEEE Transactions on Mobile Computing. 10.1109/TMC.2022.3164325. 22:8. (4881-4897).

    https://ieeexplore.ieee.org/document/9748012/

  • Zhang M, Beltrán F and Liu J. A Survey of Data Pricing for Data Marketplaces. IEEE Transactions on Big Data. 10.1109/TBDATA.2023.3254152. 9:4. (1038-1056).

    https://ieeexplore.ieee.org/document/10064072/

  • Buyukates B, He C, Han S, Fang Z, Zhang Y, Long J, Farahanchi A and Avestimehr S. (2023). Proof-of-Contribution-Based Design for Collaborative Machine Learning on Blockchain 2023 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). 10.1109/DAPPS57946.2023.00012. 979-8-3503-3535-4. (13-22).

    https://ieeexplore.ieee.org/document/10237023/

  • Huang Y, Li Y and Cai Z. Security and Privacy in Metaverse: A Comprehensive Survey. Big Data Mining and Analytics. 10.26599/BDMA.2022.9020047. 6:2. (234-247).

    https://ieeexplore.ieee.org/document/10026513/

  • Xu J, Hong N, Xu Z, Zhao Z, Wu C, Kuang K, Wang J, Zhu M, Zhou J, Ren K, Yang X, Lu C, Pei J and Shum H. (2023). Data-Driven Learning for Data Rights, Data Pricing, and Privacy Computing. Engineering. 10.1016/j.eng.2022.12.008. 25. (66-76). Online publication date: 1-Jun-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2095809923000486

  • Cai H, Ye F, Yang Y, Xiao F and Zhu Y. Toward Correlated Data Trading for Private Web Browsing History. IEEE Internet of Things Journal. 10.1109/JIOT.2023.3237707. 10:7. (5859-5872).

    https://ieeexplore.ieee.org/document/10018405/

  • Azcoitia S, Iordanou C and Laoutaris N. (2023). Understanding the Price of Data in Commercial Data Marketplaces 2023 IEEE 39th International Conference on Data Engineering (ICDE). 10.1109/ICDE55515.2023.00300. 979-8-3503-2227-9. (3718-3728).

    https://ieeexplore.ieee.org/document/10184748/

  • Peng H, Miao X, Chen L, Gao Y and Yin J. (2023). Pricing Prediction Services for Profit Maximization with Incomplete Information 2023 IEEE 39th International Conference on Data Engineering (ICDE). 10.1109/ICDE55515.2023.00108. 979-8-3503-2227-9. (1353-1365).

    https://ieeexplore.ieee.org/document/10184812/

  • Feng Z, Yu S and Zhu Y. (2023). Towards personalized privacy preference aware data trading: A contract theory based approach. Computer Networks. 10.1016/j.comnet.2023.109637. 224. (109637). Online publication date: 1-Apr-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S1389128623000828

  • Cai H, Yang Y, Fan W, Xiao F and Zhu Y. Towards Correlated Data Trading for High-Dimensional Private Data. IEEE Transactions on Parallel and Distributed Systems. 10.1109/TPDS.2023.3237691. 34:3. (1047-1059).

    https://ieeexplore.ieee.org/document/10018836/

  • Zhao L, Guo D, Xie J, Luo L and Shen Y. (2023). A Closed-loop Hybrid Supervision Framework of Cryptocurrency Transactions for Data Trading in IoT. ACM Transactions on Internet of Things. 4:1. (1-26). Online publication date: 28-Feb-2023.

    https://doi.org/10.1145/3568171

  • Hou H, Qiao L, Yuan Y, Chen C and Wang G. (2023). A Scalable Query Pricing Framework for Incomplete Graph Data. Database Systems for Advanced Applications. 10.1007/978-3-031-30637-2_7. (97-113).

    https://link.springer.com/10.1007/978-3-031-30637-2_7

  • Koch K, Krenn S, Marc T, More S and Ramacher S. KRAKEN. Proceedings of the 1st International Workshop on Data Economy. (15-20).

    https://doi.org/10.1145/3565011.3569057

  • Azcoitia S, Iordanou C and Laoutaris N. Measuring the price of data in commercial data marketplaces. Proceedings of the 1st International Workshop on Data Economy. (1-7).

    https://doi.org/10.1145/3565011.3569053

  • Koutsos V, Papadopoulos D, Chatzopoulos D, Tarkoma S and Hui P. Agora: A Privacy-Aware Data Marketplace. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2021.3105099. 19:6. (3728-3740).

    https://ieeexplore.ieee.org/document/9516884/

  • Jin W, Xiao M, Guo L, Yang L and Li M. ULPT: A User-Centric Location Privacy Trading Framework for Mobile Crowd Sensing. IEEE Transactions on Mobile Computing. 10.1109/TMC.2021.3058181. 21:10. (3789-3806).

    https://ieeexplore.ieee.org/document/9351661/

  • Pei J. A Survey on Data Pricing: From Economics to Data Science. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.3045927. 34:10. (4586-4608).

    https://ieeexplore.ieee.org/document/9300226/

  • Zhang L, Zhu T, Xiong P, Zhou W and Yu P. (2021). More than Privacy. ACM Computing Surveys. 54:7. (1-37). Online publication date: 30-Sep-2022.

    https://doi.org/10.1145/3460771

  • More S and Alber L. YOU SHALL NOT COMPUTE on my Data: Access Policies for Privacy-Preserving Data Marketplaces and an Implementation for a Distributed Market using MPC. Proceedings of the 17th International Conference on Availability, Reliability and Security. (1-8).

    https://doi.org/10.1145/3538969.3544445

  • Cong Z, Luo X, Pei J, Zhu F and Zhang Y. (2022). Data pricing in machine learning pipelines. Knowledge and Information Systems. 10.1007/s10115-022-01679-4. 64:6. (1417-1455). Online publication date: 1-Jun-2022.

    https://link.springer.com/10.1007/s10115-022-01679-4

  • Liu H, Peng C, Tian Y, Long S, Tian F and Wu Z. (2022). GDP vs. LDP: A Survey from the Perspective of Information-Theoretic Channel. Entropy. 10.3390/e24030430. 24:3. (430).

    https://www.mdpi.com/1099-4300/24/3/430

  • Cai H, Ye F, Yang Y, Zhu Y, Li J and Xiao F. Online Pricing and Trading of Private Data in Correlated Queries. IEEE Transactions on Parallel and Distributed Systems. 10.1109/TPDS.2021.3095238. 33:3. (569-585).

    https://ieeexplore.ieee.org/document/9477119/

  • Abbas A, Agahari W, van de Ven M, Zuiderwijk A and de Reuver M. (2021). Business Data Sharing through Data Marketplaces: A Systematic Literature Review. Journal of Theoretical and Applied Electronic Commerce Research. 10.3390/jtaer16070180. 16:7. (3321-3339).

    https://www.mdpi.com/0718-1876/16/7/180

  • Cai Z, Zheng X and Wang J. (2021). Efficient Data Trading for Stable and Privacy Preserving Histograms in Internet of Things 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC). 10.1109/IPCCC51483.2021.9679420. 978-1-6654-4331-9. (1-10).

    https://ieeexplore.ieee.org/document/9679420/

  • Feng Z, Chen J and Zhu Y. (2021). Uncovering Value of Correlated Data: Trading Data based on Iterative Combinatorial Auction 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). 10.1109/MASS52906.2021.00042. 978-1-6654-4935-9. (260-268).

    https://ieeexplore.ieee.org/document/9637788/

  • Feng Z, Chen J and Liu T. (2021). An Online Truthful Auction for IoT Data Trading with Dynamic Data Owners. Collaborative Computing: Networking, Applications and Worksharing. 10.1007/978-3-030-92635-9_32. (554-571).

    https://link.springer.com/10.1007/978-3-030-92635-9_32

  • Zhang X, Zhang J, Pike M, Mustafa N, Towey D and Brusic V. (2021). Sensor Networks and Personal Health Data Management: Software Engineering Challenges. Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3. 10.1007/978-3-030-63092-8_10. (140-159).

    http://link.springer.com/10.1007/978-3-030-63092-8_10

  • Zheng S, Cao Y and Yoshikawa M. (2020). Money Cannot Buy Everything: Trading Mobile Data with Controllable Privacy Loss 2020 21st IEEE International Conference on Mobile Data Management (MDM). 10.1109/MDM48529.2020.00024. 978-1-7281-4663-8. (29-38).

    https://ieeexplore.ieee.org/document/9162289/

  • Niu C, Zheng Z, Wu F, Tang S and Chen G. (2020). Online Pricing with Reserve Price Constraint for Personal Data Markets 2020 IEEE 36th International Conference on Data Engineering (ICDE). 10.1109/ICDE48307.2020.00218. 978-1-7281-2903-7. (1978-1981).

    https://ieeexplore.ieee.org/document/9101366/

  • Niu C, Zheng Z, Wu F, Tang S and Chen G. Online Pricing with Reserve Price Constraint for Personal Data Markets. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.3000262. (1-1).

    https://ieeexplore.ieee.org/document/9109677/

  • Ou L, Qin Z, Liao S, Weng J and Jia X. An Optimal Noise Mechanism for Cross-correlated IoT Data Releasing. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2020.3031223. (1-1).

    https://ieeexplore.ieee.org/document/9224157/

  • Ye D, Zhu T, Shen S, Zhou W and Yu P. Differentially Private Multi-Agent Planning for Logistic-like Problems. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2020.3017497. (1-1).

    https://ieeexplore.ieee.org/document/9170873/

  • Shen Y, Guo B, Shen Y, Wu F, Zhang H, Duan X and Dong X. (2019). Pricing Personal Data Based on Data Provenance. Applied Sciences. 10.3390/app9163388. 9:16. (3388).

    https://www.mdpi.com/2076-3417/9/16/3388

  • Cloos J, Frank B, Kampenhuber L, Karam S, Luong N, Möller D, Monge-Larrain M, Dat N, Nilgen M and Rössler C. (2019). Is Your Privacy for Sale? An Experiment on the Willingness to Reveal Sensitive Information. Games. 10.3390/g10030028. 10:3. (28).

    https://www.mdpi.com/2073-4336/10/3/28

  • Cai Z and He Z. (2019). Trading Private Range Counting over Big IoT Data 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). 10.1109/ICDCS.2019.00023. 978-1-7281-2519-0. (144-153).

    https://ieeexplore.ieee.org/document/8884986/

  • Cai H, Ye F, Yang Y, Zhu Y and Li J. Towards privacy-preserving data trading for web browsing history. Proceedings of the International Symposium on Quality of Service. (1-10).

    https://doi.org/10.1145/3326285.3329060

  • Niu C, Zheng Z, Tang S, Gao X and Wu F. (2019). Making Big Money from Small Sensors: Trading Time-Series Data under Pufferfish Privacy IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. 10.1109/INFOCOM.2019.8737579. 978-1-7281-0515-4. (568-576).

    https://ieeexplore.ieee.org/document/8737579/

  • Zhang M and Beltrán F. A Survey of Data Pricing Methods. SSRN Electronic Journal. 10.2139/ssrn.3609120.

    https://www.ssrn.com/abstract=3609120