• Sharma S, Singh L and Tiwari R. (2024). Design of an Efficient Integrated Feature Engineering based Deep Learning Model Using CNN for Customer’s Review Helpfulness Prediction. Wireless Personal Communications. 10.1007/s11277-023-10834-1. 133:4. (2125-2161). Online publication date: 1-Dec-2023.

    https://link.springer.com/10.1007/s11277-023-10834-1

  • Saptono R and Mine T. (2022). Adaptive Neighborhood Distribution-based Model for Estimating Helpful Votes of Customer Review 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). 10.1109/WI-IAT55865.2022.00029. 978-1-6654-9402-1. (143-150).

    https://ieeexplore.ieee.org/document/10101882/

  • Saptono R and Mine T. (2020). Time-based Sampling Methods for Detecting Helpful Reviews 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). 10.1109/WIIAT50758.2020.00076. 978-1-6654-1924-6. (508-513).

    https://ieeexplore.ieee.org/document/9457709/

  • Bilal M, Marjani M, Lali M, Malik N, Gani A and Hashem I. Profiling Users’ Behavior, and Identifying Important Features of Review “Helpfulness”. IEEE Access. 10.1109/ACCESS.2020.2989463. 8. (77227-77244).

    https://ieeexplore.ieee.org/document/9075989/

  • Du J, Rong J, Michalska S, Wang H, Zhang Y and Khan F. (2019). Feature selection for helpfulness prediction of online product reviews: An empirical study. PLOS ONE. 10.1371/journal.pone.0226902. 14:12. (e0226902).

    https://dx.plos.org/10.1371/journal.pone.0226902

  • Bilal M, Marjani M, Hashem I, Abdullahi A, Tayyab M and Gani A. (2019). Predicting Helpfulness of Crowd-Sourced Reviews: A Survey 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). 10.1109/MACS48846.2019.9024814. 978-1-7281-4956-1. (1-8).

    https://ieeexplore.ieee.org/document/9024814/