• Harel R, Kadosh T, Hasabnis N, Mattson T, Pinter Y and Oren G. (2024). PragFormer: Data-Driven Parallel Source Code Classification with Transformers. International Journal of Parallel Programming. 10.1007/s10766-024-00778-9. 53:1. Online publication date: 1-Feb-2025.

    https://link.springer.com/10.1007/s10766-024-00778-9

  • Timofeev V. (2024). Code Completion Using Markov Chains. Vestnik NSU. Series: Information Technologies. 10.25205/1818-7900-2024-22-2-57-67. 22:2. (57-67).

    https://intechngu.elpub.ru/jour/article/view/271

  • Ghaemi H, Alizadehsani Z, Shahraki A and Corchado J. (2024). Transformers in source code generation: A comprehensive survey. Journal of Systems Architecture. 10.1016/j.sysarc.2024.103193. 153. (103193). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S1383762124001309

  • Xu S, Shen J, Li Y, Yao Y, Yu P, Xu F and Ma X. On the Heterophily of Program Graphs: A Case Study of Graph-based Type Inference. Proceedings of the 15th Asia-Pacific Symposium on Internetware. (1-10).

    https://doi.org/10.1145/3671016.3671389

  • Olewicki D, Habchi S and Adams B. (2024). An Empirical Study on Code Review Activity Prediction and Its Impact in Practice. Proceedings of the ACM on Software Engineering. 1:FSE. (2238-2260). Online publication date: 12-Jul-2024.

    https://doi.org/10.1145/3660806

  • Liu F, Fu Z, Li G, Jin Z, Liu H, Hao Y and Zhang L. (2024). Non-Autoregressive Line-Level Code Completion. ACM Transactions on Software Engineering and Methodology. 33:5. (1-34). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3649594

  • Hadj-Kacem M and Bouassida N. (2024). Application of Deep Learning for Code Smell Detection: Challenges and Opportunities. SN Computer Science. 5:5. Online publication date: 3-Jun-2024.

    https://doi.org/10.1007/s42979-024-02956-5

  • Zong X, Zheng S, Zou H, Yu H and Gao S. (2024). GraphPyRec: A novel graph-based approach for fine-grained Python code recommendation. Science of Computer Programming. 10.1016/j.scico.2024.103166. (103166). Online publication date: 1-Jun-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0167642324000893

  • Dong C, Jiang Y, Niu N, Zhang Y and Liu H. Context-Aware Name Recommendation for Field Renaming. Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. (1-13).

    https://doi.org/10.1145/3597503.3639195

  • Chen J, Hu X, Li Z, Gao C, Xia X and Lo D. Code Search is All You Need? Improving Code Suggestions with Code Search. Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. (1-13).

    https://doi.org/10.1145/3597503.3639085

  • Nader Palacio D, Velasco A, Cooper N, Rodriguez A, Moran K and Poshyvanyk D. Toward a Theory of Causation for Interpreting Neural Code Models. IEEE Transactions on Software Engineering. 10.1109/TSE.2024.3379943. 50:5. (1215-1243).

    https://ieeexplore.ieee.org/document/10477672/

  • Chen J, Xiao L and Shen Y. (2024). API Completion Recommendation Algorithm Based on Programming Site Context 2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR). 10.1109/ISSSR61934.2024.00037. 979-8-3503-6293-0. (251-257).

    https://ieeexplore.ieee.org/document/10562109/

  • Qiu S, Huang H, Luo J, Kuang Y and Luo H. (2024). BAFLineDP: Code Bilinear Attention Fusion Framework for Line- Level Defect Prediction 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER60148.2024.00036. 979-8-3503-3066-3. (1-12).

    https://ieeexplore.ieee.org/document/10589784/

  • HONG J, CHOI E and MIZUNO O. (2024). A Combined Alignment Model for Code Search. IEICE Transactions on Information and Systems. 10.1587/transinf.2023MPP0002. E107.D:3. (257-267). Online publication date: 1-Mar-2024.

    https://www.jstage.jst.go.jp/article/transinf/E107.D/3/E107.D_2023MPP0002/_article

  • Sharma T, Kechagia M, Georgiou S, Tiwari R, Vats I, Moazen H and Sarro F. (2024). A survey on machine learning techniques applied to source code. Journal of Systems and Software. 209:C. Online publication date: 1-Mar-2024.

    https://doi.org/10.1016/j.jss.2023.111934

  • Yang F, Zhong F, Zeng G, Xiao P and Zheng W. (2024). LineFlowDP: A Deep Learning-Based Two-Phase Approach for Line-Level Defect Prediction. Empirical Software Engineering. 29:2. Online publication date: 1-Mar-2024.

    https://doi.org/10.1007/s10664-023-10439-z

  • Ding Z, Tang Y, Cheng X, Li H and Shang W. (2023). LoGenText-Plus: Improving Neural Machine Translation Based Logging Texts Generation with Syntactic Templates. ACM Transactions on Software Engineering and Methodology. 33:2. (1-45). Online publication date: 29-Feb-2024.

    https://doi.org/10.1145/3624740

  • Kim K, Ghatpande S, Kim D, Zhou X, Liu K, Bissyandé T, Klein J and Le Traon Y. (2023). Big Code Search: A Bibliography. ACM Computing Surveys. 56:1. (1-49). Online publication date: 31-Jan-2024.

    https://doi.org/10.1145/3604905

  • Faseeh M, Khan M, Iqbal N, Qayyum F, Mehmood A and Kim J. Enhancing User Experience on Q&A Platforms: Measuring Text Similarity Based on Hybrid CNN-LSTM Model for Efficient Duplicate Question Detection. IEEE Access. 10.1109/ACCESS.2024.3358422. 12. (34512-34526).

    https://ieeexplore.ieee.org/document/10414059/

  • Pailus R and Alfred R. (2024). A Robust Multiple Adaptive Derivative Face Recognition System on Pose and Illumination. Proceedings of the 4th International Conference on Advances in Computational Science and Engineering. 10.1007/978-981-97-2977-7_11. (179-198).

    https://link.springer.com/10.1007/978-981-97-2977-7_11

  • Brauner L and Höppner F. (2024). Enhancing Computer Science Education by Automated Analysis of Students’ Code Submissions. Artificial Intelligence. ECAI 2023 International Workshops. 10.1007/978-3-031-50485-3_37. (369-380).

    https://link.springer.com/10.1007/978-3-031-50485-3_37

  • Agrawal L, Kanade A, Goyal N, Lahiri S and Rajamani S. Monitor-guided decoding of code LMs with static analysis of repository context. Proceedings of the 37th International Conference on Neural Information Processing Systems. (32270-32298).

    /doi/10.5555/3666122.3667523

  • Jain K, Alon U, Groce A and Le Goues C. Contextual Predictive Mutation Testing. Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (250-261).

    https://doi.org/10.1145/3611643.3616289

  • Rahman M and Roy C. (2023). A Systematic Review of Automated Query Reformulations in Source Code Search. ACM Transactions on Software Engineering and Methodology. 32:6. (1-79). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3607179

  • Wang S, Wen M, Lin B, Liu Y, Bissyandé T and Mao X. (2023). Pre-implementation Method Name Prediction for Object-oriented Programming. ACM Transactions on Software Engineering and Methodology. 32:6. (1-35). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3597203

  • Zhou L, Xiao Z and Ning Z. (2023). RWKV-based Encoder-Decoder Model for Code Completion 2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT). 10.1109/EIECT60552.2023.10442108. 979-8-3503-5770-7. (425-428).

    https://ieeexplore.ieee.org/document/10442108/

  • Asare O, Nagappan M and Asokan N. (2023). Is GitHub’s Copilot as bad as humans at introducing vulnerabilities in code?. Empirical Software Engineering. 10.1007/s10664-023-10380-1. 28:6. Online publication date: 1-Nov-2023.

    https://link.springer.com/10.1007/s10664-023-10380-1

  • Agarwal T and Thakur N. (2023). Deep Learning in Requirement Engineering: A Statistical Justification 2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS). 10.1109/ICCAMS60113.2023.10525759. 979-8-3503-1706-0. (1-8).

    https://ieeexplore.ieee.org/document/10525759/

  • Jin H, Zhou Y and Hussain Y. (2023). Enhancing Code Completion with Implicit Feedback 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS). 10.1109/QRS60937.2023.00030. 979-8-3503-1958-3. (218-227).

    https://ieeexplore.ieee.org/document/10366751/

  • Zhu J, Huang Y, Chen X, Wang R and Zheng Z. (2023). SyntaxLineDP: a Line-level Software Defect Prediction Model based on Extended Syntax Information 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS). 10.1109/QRS60937.2023.00018. 979-8-3503-1958-3. (83-94).

    https://ieeexplore.ieee.org/document/10366602/

  • Shuvo O, Mahbub P and Rahman M. (2023). Recommending Code Reviews Leveraging Code Changes with Structured Information Retrieval 2023 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME58846.2023.00029. 979-8-3503-2783-0. (194-206).

    https://ieeexplore.ieee.org/document/10336317/

  • Guo Z, Liu S, Liu X, Lai W, Ma M, Zhang X, Ni C, Yang Y, Li Y, Chen L, Zhou G and Zhou Y. (2023). Code-line-level Bugginess Identification: How Far have We Come, and How Far have We Yet to Go?. ACM Transactions on Software Engineering and Methodology. 32:4. (1-55). Online publication date: 31-Jul-2023.

    https://doi.org/10.1145/3582572

  • Shrivastava D, Larochelle H and Tarlow D. Repository-level prompt generation for large language models of code. Proceedings of the 40th International Conference on Machine Learning. (31693-31715).

    /doi/10.5555/3618408.3619722

  • Yu Z, Martinez M, Chen Z, Bissyandé T and Monperrus M. Learning the Relation Between Code Features and Code Transforms With Structured Prediction. IEEE Transactions on Software Engineering. 10.1109/TSE.2023.3275380. 49:7. (3872-3900).

    https://ieeexplore.ieee.org/document/10130317/

  • Ciurumelea A, Alexandru C, Gall H and Proksch S. (2023). Completing Function Documentation Comments Using Structural Information. Empirical Software Engineering. 28:4. Online publication date: 1-Jul-2023.

    https://doi.org/10.1007/s10664-022-10284-6

  • Yang J, Wu W and Ren J. (2023). The Application of Generating API Call Sequence Code for Android Driven by Neural Network 2023 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN54540.2023.10191527. 978-1-6654-8867-9. (1-8).

    https://ieeexplore.ieee.org/document/10191527/

  • Gong L, Zhang J, Wei M, Zhang H and Huang Z. (2023). What Is the Intended Usage Context of This Model? An Exploratory Study of Pre-Trained Models on Various Model Repositories. ACM Transactions on Software Engineering and Methodology. 32:3. (1-57). Online publication date: 31-May-2023.

    https://doi.org/10.1145/3569934

  • Panda D, Basia P, Nallavolu K, Zhong X, Siy H and Song M. (2023). A Statistical Method for API Usage Learning and API Misuse Violation Finding 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA). 10.1109/SERA57763.2023.10197708. 979-8-3503-4588-9. (358-365).

    https://ieeexplore.ieee.org/document/10197708/

  • Gruner B, Sonnekalb T, Heinze T and Brust C. (2023). Cross-Domain Evaluation of a Deep Learning-Based Type Inference System 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). 10.1109/MSR59073.2023.00034. 979-8-3503-1184-6. (158-169).

    https://ieeexplore.ieee.org/document/10174049/

  • Griebl E, Fein B, Obermüller F, Fraser G and Just R. (2023). On the Applicability of Language Models to Block-Based Programs 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00199. 978-1-6654-5701-9. (2374-2386).

    https://ieeexplore.ieee.org/document/10172831/

  • Mastropaolo A, Pascarella L, Guglielmi E, Ciniselli M, Scalabrino S, Oliveto R and Bavota G. (2023). On the Robustness of Code Generation Techniques: An Empirical Study on GitHub Copilot 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00181. 978-1-6654-5701-9. (2149-2160).

    https://ieeexplore.ieee.org/document/10172792/

  • Lyu Y, Le-Cong T, Kang H, Widyasari R, Zhao Z, Le X, Li M and Lo D. (2023). CHRONOS: Time-Aware Zero-Shot Identification of Libraries from Vulnerability Reports 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00094. 978-1-6654-5701-9. (1033-1045).

    https://ieeexplore.ieee.org/document/10172641/

  • Zhou X, Kim K, Xu B, Han D, He J and Lo D. (2023). Generation-based Code Review Automation: How Far Are We? 2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC). 10.1109/ICPC58990.2023.00036. 979-8-3503-3750-1. (215-226).

    https://ieeexplore.ieee.org/document/10174115/

  • Wang Z, Liu F, Hao Y and Jin Z. (2023). AdaComplete: improve DL-based code completion method’s domain adaptability. Automated Software Engineering. 30:1. Online publication date: 1-May-2023.

    https://doi.org/10.1007/s10515-023-00376-y

  • Romano A and Wang W. Automated WebAssembly Function Purpose Identification With Semantics-Aware Analysis. Proceedings of the ACM Web Conference 2023. (2885-2894).

    https://doi.org/10.1145/3543507.3583235

  • Nguyen P, Di Sipio C, Di Rocco J, Di Ruscio D and Di Penta M. (2023). Fitting missing API puzzles with machine translation techniques. Expert Systems with Applications. 10.1016/j.eswa.2022.119477. 216. (119477). Online publication date: 1-Apr-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417422024964

  • Yang Y. (2023). Improving Code Completion by Solving Data Inconsistencies in the Source Code with a Hierarchical Language Model. Electronics. 10.3390/electronics12071576. 12:7. (1576).

    https://www.mdpi.com/2079-9292/12/7/1576

  • Zeng J, He Y, Zhang T, Xu Z and Han Q. (2023). CLG-Trans: Contrastive learning for code summarization via graph attention-based transformer. Science of Computer Programming. 10.1016/j.scico.2023.102925. 226. (102925). Online publication date: 1-Mar-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0167642323000072

  • Karmakar A, Allamanis M and Robbes R. (2023). JEMMA: An extensible Java dataset for ML4Code applications. Empirical Software Engineering. 28:2. Online publication date: 1-Mar-2023.

    https://doi.org/10.1007/s10664-022-10275-7

  • Mastropaolo A, Aghajani E, Pascarella L and Bavota G. (2023). Automated variable renaming: are we there yet?. Empirical Software Engineering. 28:2. Online publication date: 1-Mar-2023.

    https://doi.org/10.1007/s10664-022-10274-8

  • Bertolotti F and Cazzola W. (2023). Fold2Vec: Towards a Statement-Based Representation of Code for Code Comprehension. ACM Transactions on Software Engineering and Methodology. 32:1. (1-31). Online publication date: 31-Jan-2023.

    https://doi.org/10.1145/3514232

  • Pornprasit C and Tantithamthavorn C. DeepLineDP: Towards a Deep Learning Approach for Line-Level Defect Prediction. IEEE Transactions on Software Engineering. 10.1109/TSE.2022.3144348. 49:1. (84-98).

    https://ieeexplore.ieee.org/document/9689967/

  • Rahman M, Watanobe Y and Hamada M. (2023). A Survey on Automated Code Evaluation Systems and Their Resources for Code Analysis. Advances and Trends in Artificial Intelligence. Theory and Applications. 10.1007/978-3-031-36822-6_33. (385-396).

    https://link.springer.com/10.1007/978-3-031-36822-6_33

  • Aljumah S and Berriche L. (2022). Bi-LSTM-Based Neural Source Code Summarization. Applied Sciences. 10.3390/app122412587. 12:24. (12587).

    https://www.mdpi.com/2076-3417/12/24/12587

  • Yu W, Kou G, Liu Q, Zhang H and Wang Q. (2022). PATVD:Vulnerability Detection Based on Pre-training Techniques and Adversarial Training 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00253. 979-8-3503-4655-8. (1774-1781).

    https://ieeexplore.ieee.org/document/10189687/

  • Wei C, Huang Z and Yu Y. (2022). Improved Methods of Pointer Mixture Network for Code Completion 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). 10.1109/QRS57517.2022.00095. 978-1-6654-7704-8. (907-915).

    https://ieeexplore.ieee.org/document/10062410/

  • Kim M, Kim Y, Jeong H, Heo J, Kim S, Chung H and Lee E. An empirical study of deep transfer learning-based program repair for Kotlin projects. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1441-1452).

    https://doi.org/10.1145/3540250.3558967

  • Chakraborty S, Ahmed T, Ding Y, Devanbu P and Ray B. NatGen: generative pre-training by “naturalizing” source code. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (18-30).

    https://doi.org/10.1145/3540250.3549162

  • Hong Y, Tantithamthavorn C, Thongtanunam P and Aleti A. CommentFinder: a simpler, faster, more accurate code review comments recommendation. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (507-519).

    https://doi.org/10.1145/3540250.3549119

  • Kim J, Jeon J, Hong S and Yoo S. (2022). Predictive Mutation Analysis via the Natural Language Channel in Source Code. ACM Transactions on Software Engineering and Methodology. 31:4. (1-27). Online publication date: 31-Oct-2022.

    https://doi.org/10.1145/3510417

  • Ahmed T and Devanbu P. Few-shot training LLMs for project-specific code-summarization. Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. (1-5).

    https://doi.org/10.1145/3551349.3559555

  • Sarsa S, Leinonen J, Koutcheme C and Hellas A. Speeding Up Automated Assessment of Programming Exercises. Proceedings of the 2022 Conference on United Kingdom & Ireland Computing Education Research. (1-7).

    https://doi.org/10.1145/3555009.3555013

  • Jiang Y, Su X, Treude C and Wang T. (2022). Hierarchical semantic-aware neural code representation. Journal of Systems and Software. 191:C. Online publication date: 1-Sep-2022.

    https://doi.org/10.1016/j.jss.2022.111355

  • Yao J, Rao B, Xing W and Wang L. (2022). Bug-Transformer: Automated Program Repair Using Attention-Based Deep Neural Network. Journal of Circuits, Systems and Computers. 10.1142/S0218126622502103. 31:12. Online publication date: 1-Aug-2022.

    https://www.worldscientific.com/doi/10.1142/S0218126622502103

  • Agrawal A, Yang X, Agrawal R, Yedida R, Shen X and Menzies T. Simpler Hyperparameter Optimization for Software Analytics: Why, How, When?. IEEE Transactions on Software Engineering. 10.1109/TSE.2021.3073242. 48:8. (2939-2954).

    https://ieeexplore.ieee.org/document/9405415/

  • Deng F, Fu C, Qian Y, Yang J, He S and Xu H. (2022). Federated learning based multi‐task feature fusion framework for code expressive semantic extraction. Software: Practice and Experience. 10.1002/spe.3094. 52:8. (1849-1866). Online publication date: 1-Aug-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/spe.3094

  • Liu F, Li G, Wei B, Xia X, Fu Z and Jin Z. (2022). A unified multi-task learning model for AST-level and token-level code completion. Empirical Software Engineering. 27:4. Online publication date: 1-Jul-2022.

    https://doi.org/10.1007/s10664-022-10140-7

  • Xu F, Alon U, Neubig G and Hellendoorn V. A systematic evaluation of large language models of code. Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming. (1-10).

    https://doi.org/10.1145/3520312.3534862

  • Zhou Y, Shen J, Zhang X, Yang W, Han T and Chen T. (2022). Automatic source code summarization with graph attention networks. Journal of Systems and Software. 10.1016/j.jss.2022.111257. 188. (111257). Online publication date: 1-Jun-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0164121222000279

  • Weyssow M, Sahraoui H and Liu B. Better modeling the programming world with code concept graphs-augmented multi-modal learning. Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: New Ideas and Emerging Results. (21-25).

    https://doi.org/10.1145/3510455.3512771

  • Kang H, Aw K and Lo D. Detecting false alarms from automatic static analysis tools. Proceedings of the 44th International Conference on Software Engineering. (698-709).

    https://doi.org/10.1145/3510003.3510214

  • Izadi M, Gismondi R and Gousios G. CodeFill. Proceedings of the 44th International Conference on Software Engineering. (401-412).

    https://doi.org/10.1145/3510003.3510172

  • Thongtanunam P, Pornprasit C and Tantithamthavorn C. AutoTransform. Proceedings of the 44th International Conference on Software Engineering. (237-248).

    https://doi.org/10.1145/3510003.3510067

  • Wattanakriengkrai S, Thongtanunam P, Tantithamthavorn C, Hata H and Matsumoto K. Predicting Defective Lines Using a Model-Agnostic Technique. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.3023177. 48:5. (1480-1496).

    https://ieeexplore.ieee.org/document/9193975/

  • Weyssow M, Sahraoui H and Liu B. (2022). Better Modeling the Programming World with Code Concept Graphs-augmented Multi-modal Learning 2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). 10.1109/ICSE-NIER55298.2022.9793511. 978-1-6654-9596-7. (21-25).

    https://ieeexplore.ieee.org/document/9793511/

  • Wan Y, He Y, Bi Z, Zhang J, Sui Y, Zhang H, Hashimoto K, Jin H, Xu G, Xiong C and Yu P. (2022). NaturalCC: An Open-Source Toolkit for Code Intelligence 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 10.1109/ICSE-Companion55297.2022.9793799. 978-1-6654-9598-1. (149-153).

    https://ieeexplore.ieee.org/document/9793799/

  • Watson C, Cooper N, Palacio D, Moran K and Poshyvanyk D. (2022). A Systematic Literature Review on the Use of Deep Learning in Software Engineering Research. ACM Transactions on Software Engineering and Methodology. 31:2. (1-58). Online publication date: 30-Apr-2022.

    https://doi.org/10.1145/3485275

  • Abdullah and Gupta K. (2022). Deep Learning in Object Oriented Software Engineering: A Case Of Stability 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). 10.1109/ICACITE53722.2022.9823479. 978-1-6654-3789-9. (1431-1435).

    https://ieeexplore.ieee.org/document/9823479/

  • Aniche M, Maziero E, Durelli R and Durelli V. The Effectiveness of Supervised Machine Learning Algorithms in Predicting Software Refactoring. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.3021736. 48:4. (1432-1450).

    https://ieeexplore.ieee.org/document/9186715/

  • Chakraborty S, Ding Y, Allamanis M and Ray B. CODIT: Code Editing With Tree-Based Neural Models. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.3020502. 48:4. (1385-1399).

    https://ieeexplore.ieee.org/document/9181462/

  • Jiang L, Liu H, Jiang H, Zhang L and Mei H. Heuristic and Neural Network Based Prediction of Project-Specific API Member Access. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.3017794. 48:4. (1249-1267).

    https://ieeexplore.ieee.org/document/9171589/

  • Hong Y, Tantithamthavorn C and Thongtanunam P. (2022). Where Should I Look at? Recommending Lines that Reviewers Should Pay Attention To 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER53432.2022.00121. 978-1-6654-3786-8. (1034-1045).

    https://ieeexplore.ieee.org/document/9825760/

  • Ding Z, Li H and Shang W. (2022). LoGenText: Automatically Generating Logging Texts Using Neural Machine Translation 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER53432.2022.00051. 978-1-6654-3786-8. (349-360).

    https://ieeexplore.ieee.org/document/9825813/

  • Huq F, Hasan M, Haque M, Mahbub S, Iqbal A and Ahmed T. (2022). Review4Repair. Information and Software Technology. 143:C. Online publication date: 1-Mar-2022.

    https://doi.org/10.1016/j.infsof.2021.106765

  • Yang K, Yu H, Fan G, Yang X and Huang Z. (2022). A graph sequence neural architecture for code completion with semantic structure features. Journal of Software: Evolution and Process. 34:1. Online publication date: 18-Jan-2022.

    https://doi.org/10.1002/smr.2414

  • Hellendoorn V and Sawant A. (2021). The growing cost of deep learning for source code. Communications of the ACM. 65:1. (31-33). Online publication date: 1-Jan-2022.

    https://doi.org/10.1145/3501261

  • Yan M, Xia X, Fan Y, Hassan A, Lo D and Li S. Just-In-Time Defect Identification and Localization: A Two-Phase Framework. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.2978819. 48:1. (82-101).

    https://ieeexplore.ieee.org/document/9026802/

  • Karanikiotis T, Chatzidimitriou K and Symeonidis A. (2022). A Personalized Code Formatter: Detection and Fixing. Software Technologies. 10.1007/978-3-031-11513-4_8. (169-192).

    https://link.springer.com/10.1007/978-3-031-11513-4_8

  • Liang X. (2021). Hardware descriptions code completion based on a pre-training model 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). 10.1109/TOCS53301.2021.9688846. 978-1-6654-2498-1. (228-232).

    https://ieeexplore.ieee.org/document/9688846/

  • Zeng J, Zhang T and Xu Z. (2021). DG-Trans: Automatic Code Summarization via Dynamic Graph Attention-based Transformer 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). 10.1109/QRS54544.2021.00088. 978-1-6654-5813-9. (786-795).

    https://ieeexplore.ieee.org/document/9724754/

  • Sun X, Zhou T, Wang R, Duan Y, Bo L and Chang J. (2021). Experience report: investigating bug fixes in machine learning frameworks/libraries. Frontiers of Computer Science: Selected Publications from Chinese Universities. 15:6. Online publication date: 1-Dec-2021.

    https://doi.org/10.1007/s11704-020-9441-1

  • Liu C, Lin Z, Lou J, Wen L and Zhang D. (2021). Can Neural Clone Detection Generalize to Unseen Functionalitiesƒ 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). 10.1109/ASE51524.2021.9678907. 978-1-6654-0337-5. (617-629).

    https://ieeexplore.ieee.org/document/9678907/

  • Paltenghi M and Pradel M. (2021). Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). 10.1109/ASE51524.2021.9678712. 978-1-6654-0337-5. (867-879).

    https://ieeexplore.ieee.org/document/9678712/

  • Li Z, Wu Y, Peng B, Chen X, Sun Z, Liu Y and Yu D. (2021). SeCNN. Journal of Systems and Software. 181:C. Online publication date: 1-Nov-2021.

    https://doi.org/10.1016/j.jss.2021.111036

  • Heyman G, Huysegems R, Justen P and Van Cutsem T. Natural language-guided programming. Proceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. (39-55).

    https://doi.org/10.1145/3486607.3486749

  • Duan X, Wu J, Du M, Luo T, Yang M and Wu Y. (2021). MultiCode: A Unified Code Analysis Framework based on Multi-type and Multi-granularity Semantic Learning 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). 10.1109/ISSREW53611.2021.00102. 978-1-6654-2603-9. (359-364).

    https://ieeexplore.ieee.org/document/9700202/

  • Zhang F, Chen B, Li R and Peng X. (2021). A hybrid code representation learning approach for predicting method names. Journal of Systems and Software. 180:C. Online publication date: 1-Oct-2021.

    https://doi.org/10.1016/j.jss.2021.111011

  • Farmahinifarahani F, Lu Y, Saini V, Baldi P and Lopes C. (2021). D-REX: Static Detection of Relevant Runtime Exceptions with Location Aware Transformer 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM). 10.1109/SCAM52516.2021.00032. 978-1-6654-4897-0. (198-208).

    https://ieeexplore.ieee.org/document/9610641/

  • Wen F, Ferrari V, Aghajani E, Nagy C, Lanza M and Bavota G. (2021). FeaRS: Recommending Complete Android Method Implementations 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME52107.2021.00062. 978-1-6654-2882-8. (589-593).

    https://ieeexplore.ieee.org/document/9609117/

  • Mazrae P, Izadi M and Heydarnoori A. (2021). Automated Recovery of Issue-Commit Links Leveraging Both Textual and Non-textual Data 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME52107.2021.00030. 978-1-6654-2882-8. (263-273).

    https://ieeexplore.ieee.org/document/9609165/

  • Li J, Huang R, Li W, Yao K and Tan W. (2021). Toward Less Hidden Cost of Code Completion with Acceptance and Ranking Models 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME52107.2021.00024. 978-1-6654-2882-8. (195-205).

    https://ieeexplore.ieee.org/document/9609202/

  • Xiao Y. Multi-location cryptographic code repair with neural-network-based methodologies. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1640-1644).

    https://doi.org/10.1145/3468264.3473102

  • Yang H and Kuang L. CCMC: Code Completion with a Memory Mechanism and a Copy Mechanism. Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering. (129-138).

    https://doi.org/10.1145/3463274.3463332

  • Zhou C, Liu H, Zhang Y, Xue Z, Liao Q, Zhao J and Wang J. (2021). Deep Understanding of Runtime Configuration Intention. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194021500236. 31:06. (775-802). Online publication date: 1-Jun-2021.

    https://www.worldscientific.com/doi/abs/10.1142/S0218194021500236

  • Aye G, Kim S and Li H. Learning autocompletion from real-world datasets. Proceedings of the 43rd International Conference on Software Engineering: Software Engineering in Practice. (131-139).

    https://doi.org/10.1109/ICSE-SEIP52600.2021.00022

  • Jiang N, Lutellier T and Tan L. CURE. Proceedings of the 43rd International Conference on Software Engineering. (1161-1173).

    https://doi.org/10.1109/ICSE43902.2021.00107

  • Tufano R, Pascarella L, Tufano M, Poshyvanyk D and Bavota G. Towards Automating Code Review Activities. Proceedings of the 43rd International Conference on Software Engineering. (163-174).

    https://doi.org/10.1109/ICSE43902.2021.00027

  • Kim S, Zhao J, Tian Y and Chandra S. Code Prediction by Feeding Trees to Transformers. Proceedings of the 43rd International Conference on Software Engineering. (150-162).

    https://doi.org/10.1109/ICSE43902.2021.00026

  • Pornprasit C and Tantithamthavorn C. (2021). JITLine: A Simpler, Better, Faster, Finer-grained Just-In-Time Defect Prediction 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 10.1109/MSR52588.2021.00049. 978-1-7281-8710-5. (369-379).

    https://ieeexplore.ieee.org/document/9463103/

  • Svyatkovskiy A, Lee S, Hadjitofi A, Riechert M, Franco J and Allamanis M. (2021). Fast and Memory-Efficient Neural Code Completion 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 10.1109/MSR52588.2021.00045. 978-1-7281-8710-5. (329-340).

    https://ieeexplore.ieee.org/document/9463109/

  • Ciniselli M, Cooper N, Pascarella L, Poshyvanyk D, Di Penta M and Bavota G. (2021). An Empirical Study on the Usage of BERT Models for Code Completion 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 10.1109/MSR52588.2021.00024. 978-1-7281-8710-5. (108-119).

    https://ieeexplore.ieee.org/document/9463129/

  • Siddiq M, Jahin M, Ul Islam M, Shahriyar R and Iqbal A. (2021). SQLIFIX: Learning Based Approach to Fix SQL Injection Vulnerabilities in Source Code 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER50967.2021.00040. 978-1-7281-9630-5. (354-364).

    https://ieeexplore.ieee.org/document/9425978/

  • Qiu F, Gao Z, Xia X, Lo D, Grundy J and Wang X. Deep Just-In-Time Defect Localization. IEEE Transactions on Software Engineering. 10.1109/TSE.2021.3135875. (1-1).

    https://ieeexplore.ieee.org/document/9653844/

  • Ciniselli M, Cooper N, Pascarella L, Mastropaolo A, Aghajani E, Poshyvanyk D, Di Penta M and Bavota G. An Empirical Study on the Usage of Transformer Models for Code Completion. IEEE Transactions on Software Engineering. 10.1109/TSE.2021.3128234. (1-1).

    https://ieeexplore.ieee.org/document/9616462/

  • Chen Z, Kommrusch S, Tufano M, Pouchet L, Poshyvanyk D and Monperrus M. SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program Repair. IEEE Transactions on Software Engineering. 10.1109/TSE.2019.2940179. (1-1).

    https://ieeexplore.ieee.org/document/8827954/

  • Liu F, Li G, Zhao Y and Jin Z. Multi-task learning based pre-trained language model for code completion. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. (473-485).

    https://doi.org/10.1145/3324884.3416591

  • Zhang J, Wang X, Zhang H, Sun H, Pu Y and Liu X. Learning to handle exceptions. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. (29-41).

    https://doi.org/10.1145/3324884.3416568

  • Casalnuovo C, Lee K, Wang H, Devanbu P and Morgan E. (2020). Do Programmers Prefer Predictable Expressions in Code?. Cognitive Science. 10.1111/cogs.12921. 44:12. Online publication date: 1-Dec-2020.

    https://onlinelibrary.wiley.com/doi/10.1111/cogs.12921

  • Qiu F, Yan M, Xia X, Wang X, Fan Y, Hassan A and Lo D. JITO: a tool for just-in-time defect identification and localization. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1586-1590).

    https://doi.org/10.1145/3368089.3417927

  • Pradel M, Gousios G, Liu J and Chandra S. TypeWriter: neural type prediction with search-based validation. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (209-220).

    https://doi.org/10.1145/3368089.3409715

  • Fang L, Huang Z, Zhou Y and Chen T. Adaptive Code Completion with Meta-learning. Proceedings of the 12th Asia-Pacific Symposium on Internetware. (116-125).

    https://doi.org/10.1145/3457913.3457933

  • Xie C, Wang X, Qian C and Wang M. (2020). A Source Code Similarity Based on Siamese Neural Network. Applied Sciences. 10.3390/app10217519. 10:21. (7519).

    https://www.mdpi.com/2076-3417/10/21/7519

  • Zhou Z and Chen Z. (2020). Split Attention Pointer Network for Source Code Language Modeling. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194020500321. 30:09. (1221-1244). Online publication date: 1-Sep-2020.

    https://www.worldscientific.com/doi/abs/10.1142/S0218194020500321

  • Li W, Qin H, Yan S, Shen B and Chen Y. (2020). Learning Code-Query Interaction for Enhancing Code Searches 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME46990.2020.00021. 978-1-7281-5619-4. (115-126).

    https://ieeexplore.ieee.org/document/9240627/

  • Li G, Liu H, Li G, Shen S and Tang H. (2020). LSTM-based argument recommendation for non-API methods. Science China Information Sciences. 10.1007/s11432-019-2830-8. 63:9. Online publication date: 1-Sep-2020.

    https://link.springer.com/10.1007/s11432-019-2830-8

  • Lutellier T, Pham H, Pang L, Li Y, Wei M and Tan L. CoCoNuT: combining context-aware neural translation models using ensemble for program repair. Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. (101-114).

    https://doi.org/10.1145/3395363.3397369

  • Liu H, Yu Y, Li S, Guo Y, Wang D and Mao X. BugSum. Proceedings of the 28th International Conference on Program Comprehension. (94-105).

    https://doi.org/10.1145/3387904.3389272

  • LeClair A, Haque S, Wu L and McMillan C. Improved Code Summarization via a Graph Neural Network. Proceedings of the 28th International Conference on Program Comprehension. (184-195).

    https://doi.org/10.1145/3387904.3389268

  • Malhotra R, Gupta S and Singh T. (2020). A Systematic Review on Application of Deep Learning Techniques for Software Quality Predictive Modeling 2020 International Conference on Computational Performance Evaluation (ComPE). 10.1109/ComPE49325.2020.9200103. 978-1-7281-6644-5. (332-337).

    https://ieeexplore.ieee.org/document/9200103/

  • Haque S, LeClair A, Wu L and McMillan C. Improved Automatic Summarization of Subroutines via Attention to File Context. Proceedings of the 17th International Conference on Mining Software Repositories. (300-310).

    https://doi.org/10.1145/3379597.3387449

  • Shedko A, Palachev I, Kvochko A, Semenov A and Sun K. Applying probabilistic models to C++ code on an industrial scale. Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. (595-602).

    https://doi.org/10.1145/3387940.3391477

  • Karampatsis R, Babii H, Robbes R, Sutton C and Janes A. Open-vocabulary models for source code. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings. (294-295).

    https://doi.org/10.1145/3377812.3390806

  • Karampatsis R, Babii H, Robbes R, Sutton C and Janes A. Big code != big vocabulary. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. (1073-1085).

    https://doi.org/10.1145/3377811.3380342

  • Allamanis M, Barr E, Ducousso S and Gao Z. Typilus: neural type hints. Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. (91-105).

    https://doi.org/10.1145/3385412.3385997

  • Hussain Y, Huang Z, Zhou Y and Wang S. (2020). Deep Transfer Learning for Source Code Modeling. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194020500230. 30:05. (649-668). Online publication date: 1-May-2020.

    https://www.worldscientific.com/doi/abs/10.1142/S0218194020500230

  • Romaniuk M. N-gram models for code completion in Pharo. Companion Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming. (227-228).

    https://doi.org/10.1145/3397537.3398483

  • Li G, Liu H, Jin J and Umer Q. (2020). Deep Learning Based Identification of Suspicious Return Statements 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER48275.2020.9054826. 978-1-7281-5143-4. (480-491).

    https://ieeexplore.ieee.org/document/9054826/

  • Wang L, Zhang L and Jiang J. Duplicate Question Detection With Deep Learning in Stack Overflow. IEEE Access. 10.1109/ACCESS.2020.2968391. 8. (25964-25975).

    https://ieeexplore.ieee.org/document/8964380/

  • Wang L, Zhang L and Jiang J. (2019). Detecting Duplicate Questions in Stack Overflow via Deep Learning Approaches 2019 26th Asia-Pacific Software Engineering Conference (APSEC). 10.1109/APSEC48747.2019.00074. 978-1-7281-4648-5. (506-513).

    https://ieeexplore.ieee.org/document/8945690/

  • Zhou M, Chen J, Hu H, Yu J, Li Z and Hu H. (2019). DeepTLE: Learning Code-Level Features to Predict Code Performance before It Runs 2019 26th Asia-Pacific Software Engineering Conference (APSEC). 10.1109/APSEC48747.2019.00042. 978-1-7281-4648-5. (252-259).

    https://ieeexplore.ieee.org/document/8946099/

  • Zhou S, Shen B and Zhong H. Lancer. Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. (1202-1205).

    https://doi.org/10.1109/ASE.2019.00137

  • Jiang L, Liu H and Jiang H. Machine learning based recommendation of method names. Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. (602-614).

    https://doi.org/10.1109/ASE.2019.00062

  • Kang H, Bissyandé T and Lo D. Assessing the generalizability of code2vec token embeddings. Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. (1-12).

    https://doi.org/10.1109/ASE.2019.00011

  • Yang Y, Chen X and Sun J. (2020). Improve Language Modeling for Code Completion Through Learning General Token Repetition of Source Code with Optimized Memory. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194019400229. 29:11n12. (1801-1818). Online publication date: 1-Nov-2019.

    https://www.worldscientific.com/doi/abs/10.1142/S0218194019400229

  • Huang Q, Yang Y and Cheng M. (2019). Deep learning the semantics of change sequences for query expansion. Software: Practice and Experience. 10.1002/spe.2736. 49:11. (1600-1617). Online publication date: 1-Nov-2019.

    https://onlinelibrary.wiley.com/doi/10.1002/spe.2736

  • Allamanis M. The adverse effects of code duplication in machine learning models of code. Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. (143-153).

    https://doi.org/10.1145/3359591.3359735

  • Pigazzini I. Automatic detection of architectural bad smells through semantic representation of code. Proceedings of the 13th European Conference on Software Architecture - Volume 2. (59-62).

    https://doi.org/10.1145/3344948.3344951

  • Rahman M, Chakraborty S, Kaiser G and Ray B. (2019). Toward Optimal Selection of Information Retrieval Models for Software Engineering Tasks 2019 IEEE 19th International Working Conference on Source Code Analysis and Manipulation (SCAM). 10.1109/SCAM.2019.00022. 978-1-7281-4937-0. (127-138).

    https://ieeexplore.ieee.org/document/8930841/

  • Tufano M, Watson C, Bavota G, Di Penta M, White M and Poshyvanyk D. (2019). Learning How to Mutate Source Code from Bug-Fixes 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME.2019.00046. 978-1-7281-3094-1. (301-312).

    https://ieeexplore.ieee.org/document/8919234/

  • Chen C, Peng X, Sun J, Xing Z, Wang X, Zhao Y, Zhang H and Zhao W. (2019). Generative API usage code recommendation with parameter concretization. Science China Information Sciences. 10.1007/s11432-018-9821-9. 62:9. Online publication date: 1-Sep-2019.

    https://link.springer.com/10.1007/s11432-018-9821-9

  • Bui N, Yu Y and Jiang L. SAR: learning cross-language API mappings with little knowledge. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (796-806).

    https://doi.org/10.1145/3338906.3338924

  • Rahman M, Roy C and Lo D. (2019). Automatic query reformulation for code search using crowdsourced knowledge. Empirical Software Engineering. 24:4. (1869-1924). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s10664-018-9671-0

  • Casalnuovo C, Sagae K and Devanbu P. (2019). Studying the difference between natural and programming language corpora. Empirical Software Engineering. 24:4. (1823-1868). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s10664-018-9669-7

  • Allamanis M, Barr E, Devanbu P and Sutton C. (2018). A Survey of Machine Learning for Big Code and Naturalness. ACM Computing Surveys. 51:4. (1-37). Online publication date: 31-Jul-2019.

    https://doi.org/10.1145/3212695

  • Hadj-Kacem M and Bouassida N. (2019). Deep Representation Learning for Code Smells Detection using Variational Auto-Encoder 2019 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2019.8851854. 978-1-7281-1985-4. (1-8).

    https://ieeexplore.ieee.org/document/8851854/

  • Heaps J, Wang X, Breaux T and Niu J. Toward Detection of Access Control Models from Source Code via Word Embedding. Proceedings of the 24th ACM Symposium on Access Control Models and Technologies. (103-112).

    https://doi.org/10.1145/3322431.3326329

  • Robbes R and Janes A. Leveraging small software engineering data sets with pre-trained neural networks. Proceedings of the 41st International Conference on Software Engineering: New Ideas and Emerging Results. (29-32).

    https://doi.org/10.1109/ICSE-NIER.2019.00016

  • Liu Q, Liu Z, Zhu H, Fan H, Du B and Qian Y. Generating commit messages from diffs using pointer-generator network. Proceedings of the 16th International Conference on Mining Software Repositories. (299-309).

    https://doi.org/10.1109/MSR.2019.00056

  • Hellendoorn V, Proksch S, Gall H and Bacchelli A. When code completion fails. Proceedings of the 41st International Conference on Software Engineering. (960-970).

    https://doi.org/10.1109/ICSE.2019.00101

  • LeClair A, Jiang S and McMillan C. A neural model for generating natural language summaries of program subroutines. Proceedings of the 41st International Conference on Software Engineering. (795-806).

    https://doi.org/10.1109/ICSE.2019.00087

  • Rahman M, Palani D and Rigby P. Natural software revisited. Proceedings of the 41st International Conference on Software Engineering. (37-48).

    https://doi.org/10.1109/ICSE.2019.00022

  • Rahman M. Supporting code search with context-aware, analytics-driven, effective query reformulation. Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings. (226-229).

    https://doi.org/10.1109/ICSE-Companion.2019.00088

  • Bui N. Towards zero knowledge learning for cross language API mappings. Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings. (123-125).

    https://doi.org/10.1109/ICSE-Companion.2019.00054

  • Yu H, Lam W, Chen L, Li G, Xie T and Wang Q. Neural detection of semantic code clones via tree-based convolution. Proceedings of the 27th International Conference on Program Comprehension. (70-80).

    https://doi.org/10.1109/ICPC.2019.00021

  • Buch L and Andrzejak A. (2019). Learning-Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER.2019.8668039. 978-1-7281-0591-8. (95-104).

    https://ieeexplore.ieee.org/document/8668039/

  • Bui N, Yu Y and Jiang L. (2019). Bilateral Dependency Neural Networks for Cross-Language Algorithm Classification 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER.2019.8667995. 978-1-7281-0591-8. (422-433).

    https://ieeexplore.ieee.org/document/8667995/

  • Hu S, Xiao C and Ishikawa Y. (2019). Scope-aware Code Completion with Discriminative Modeling. Journal of Information Processing. 10.2197/ipsjjip.27.469. 27:0. (469-478).

    https://www.jstage.jst.go.jp/article/ipsjjip/27/0/27_469/_article

  • Song X, Sun H, Wang X and Yan J. A Survey of Automatic Generation of Source Code Comments: Algorithms and Techniques. IEEE Access. 10.1109/ACCESS.2019.2931579. 7. (111411-111428).

    https://ieeexplore.ieee.org/document/8778714/

  • Feng Y, Chen L, Zheng A, Gao C and Zheng Z. AC-Net: Assessing the Consistency of Description and Permission in Android Apps. IEEE Access. 10.1109/ACCESS.2019.2912210. 7. (57829-57842).

    https://ieeexplore.ieee.org/document/8694776/

  • Hellendoorn V, Devanbu P and Alipour M. On the naturalness of proofs. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (724-728).

    https://doi.org/10.1145/3236024.3264832

  • Zhao J, Albarghouthi A, Rastogi V, Jha S and Octeau D. Neural-augmented static analysis of Android communication. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (342-353).

    https://doi.org/10.1145/3236024.3236066

  • Loyola P, Gajananan K and Satoh F. Bug Localization by Learning to Rank and Represent Bug Inducing Changes. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (657-665).

    https://doi.org/10.1145/3269206.3271811

  • Xue H, Venkataramani G and Lan T. Clone-Slicer. Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Transformation. (27-33).

    https://doi.org/10.1145/3273045.3273047

  • LeClair A, Eberhart Z and McMillan C. (2018). Adapting Neural Text Classification for Improved Software Categorization 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME.2018.00056. 978-1-5386-7870-1. (461-472).

    https://ieeexplore.ieee.org/document/8530052/

  • Hu X, Li G, Xia X, Lo D, Lu S and Jin Z. Summarizing source code with transferred API knowledge. Proceedings of the 27th International Joint Conference on Artificial Intelligence. (2269-2275).

    /doi/10.5555/3304889.3304975

  • Tufano M, Watson C, Bavota G, Di Penta M, White M and Poshyvanyk D. Deep learning similarities from different representations of source code. Proceedings of the 15th International Conference on Mining Software Repositories. (542-553).

    https://doi.org/10.1145/3196398.3196431

  • Rahman M, Barson J, Paul S, Kayani J, Lois F, Quezada S, Parnin C, Stolee K and Ray B. Evaluating how developers use general-purpose web-search for code retrieval. Proceedings of the 15th International Conference on Mining Software Repositories. (465-475).

    https://doi.org/10.1145/3196398.3196425

  • Hu X, Li G, Xia X, Lo D and Jin Z. Deep code comment generation. Proceedings of the 26th Conference on Program Comprehension. (200-210).

    https://doi.org/10.1145/3196321.3196334

  • Jaffe A, Lacomis J, Schwartz E, Le Goues C and Vasilescu B. Meaningful variable names for decompiled code. Proceedings of the 26th Conference on Program Comprehension. (20-30).

    https://doi.org/10.1145/3196321.3196330

  • Rahman M, Chakraborty S and Ray B. Which similarity metric to use for software documents?. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. (335-336).

    https://doi.org/10.1145/3183440.3194997

  • Bui N and Jiang L. Hierarchical learning of cross-language mappings through distributed vector representations for code. Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results. (33-36).

    https://doi.org/10.1145/3183399.3183427

  • Santos E, Campbell J, Patel D, Hindle A and Amaral J. (2018). Syntax and sensibility: Using language models to detect and correct syntax errors 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER.2018.8330219. 978-1-5386-4969-5. (311-322).

    http://ieeexplore.ieee.org/document/8330219/

  • Mohammadi M, Al-Fuqaha A, Sorour S and Guizani M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey. IEEE Communications Surveys & Tutorials. 10.1109/COMST.2018.2844341. 20:4. (2923-2960).

    https://ieeexplore.ieee.org/document/8373692/

  • Kavaler D, Sirovica S, Hellendoorn V, Aranovich R and Filkov V. Perceived language complexity in GitHub issue discussions and their effect on issue resolution. Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. (72-83).

    /doi/10.5555/3155562.3155576

  • Kavaler D, Sirovica S, Hellendoorn V, Aranovich R and Filkov V. (2017). Perceived language complexity in GitHub issue discussions and their effect on issue resolution 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). 10.1109/ASE.2017.8115620. 978-1-5386-2684-9. (72-83).

    http://ieeexplore.ieee.org/document/8115620/