• Zhang X, Chen S, Shao Z, Niu Y and Fan L. Enhanced Lithographic Hotspot Detection via Multi-Task Deep Learning With Synthetic Pattern Generation. IEEE Open Journal of the Computer Society. 10.1109/OJCS.2024.3510555. 6. (141-152).

    https://ieeexplore.ieee.org/document/10772617/

  • Wang C, Fang Y and Zhang S. Feature Fusion based Hotspot Detection with R-EfficientNet. Proceedings of the Great Lakes Symposium on VLSI 2024. (446-451).

    https://doi.org/10.1145/3649476.3658707

  • Kim S and Jeon J. (2024). Methodology for Lithography Hotspot Detection using ResNet50V2 and Model soups 2024 International Conference on Electronics, Information, and Communication (ICEIC). 10.1109/ICEIC61013.2024.10457195. 979-8-3503-7188-8. (1-4).

    https://ieeexplore.ieee.org/document/10457195/

  • Shahroz M, Ali M, Tahir A, Fabian Gongora H, Uc Rios C, Abdus Samad M and Ashraf I. Hierarchical Attention Module-Based Hotspot Detection in Wafer Fabrication Using Convolutional Neural Network Model. IEEE Access. 10.1109/ACCESS.2024.3422616. 12. (92840-92855).

    https://ieeexplore.ieee.org/document/10583874/

  • Cui J, Zhang J and Wang X. (2023). Lithographic Hotspot Detection Using Adaptive Squish Pattern Sampling Combined with Faster R-CNN 2023 IEEE 15th International Conference on ASIC (ASICON). 10.1109/ASICON58565.2023.10396633. 979-8-3503-1298-0. (1-4).

    https://ieeexplore.ieee.org/document/10396633/

  • Chen T, Xiong S, He H and Yu B. TRouter: Thermal-Driven PCB Routing via Nonlocal Crisscross Attention Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2023.3243544. 42:10. (3388-3401).

    https://ieeexplore.ieee.org/document/10042057/

  • Pei Z, Zhao W, He Z and Yu B. (2023). Bit-Level Quantization for Efficient Layout Hotspot Detection 2023 International Symposium of Electronics Design Automation (ISEDA). 10.1109/ISEDA59274.2023.10218502. 979-8-3503-0451-0. (465-470).

    https://ieeexplore.ieee.org/document/10218502/

  • Chockalingam A, Naveen S, Sanjay S, Nanthakumar J and Praveenkumar V. (2023). Sensor Based Hotspot Detection And Isolation In Solar Array System Using IOT 2023 9th International Conference on Electrical Energy Systems (ICEES). 10.1109/ICEES57979.2023.10110240. 979-8-3503-4803-3. (371-376).

    https://ieeexplore.ieee.org/document/10110240/

  • Gai T, Qu T, Wang S, Su X, Xu R, Wang Y, Xue J, Su Y, Wei Y and Ye T. Flexible Hotspot Detection Based on Fully Convolutional Network With Transfer Learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2021.3135786. 41:11. (4626-4638).

    https://ieeexplore.ieee.org/document/9651514/

  • Zhang Q, Zhang Y, Li J, Lu W and Li Y. (2022). Litho-NeuralODE 2.0. Integration, the VLSI Journal. 85:C. (10-19). Online publication date: 1-Jul-2022.

    https://doi.org/10.1016/j.vlsi.2022.02.010

  • Yang Y and Sun M. (2022). Semiconductor Defect Detection by Hybrid Classical-Quantum Deep Learning 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR52688.2022.00236. 978-1-6654-6946-3. (2313-2322).

    https://ieeexplore.ieee.org/document/9879978/

  • Geng H, Chen T, Sun Q and Yu B. (2022). Techniques for CAD Tool Parameter Auto-tuning in Physical Synthesis: A Survey (Invited Paper) 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). 10.1109/ASP-DAC52403.2022.9712495. 978-1-6654-2135-5. (635-640).

    https://ieeexplore.ieee.org/document/9712495/

  • Wang B, Jiang L, Zhu W, Guo L, Chen J and Chang Y. (2021). Two-Stage Neural Network Classifier for the Data Imbalance Problem with Application to Hotspot Detection 2021 58th ACM/IEEE Design Automation Conference (DAC). 10.1109/DAC18074.2021.9586237. 978-1-6654-3274-0. (175-180).

    https://ieeexplore.ieee.org/document/9586237/

  • Zhu B, Chen R, Zhang X, Yang F, Zeng X, Yu B and Wong M. (2021). Hotspot Detection via Multi-task Learning and Transformer Encoder 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 10.1109/ICCAD51958.2021.9643590. 978-1-6654-4507-8. (1-8).

    https://ieeexplore.ieee.org/document/9643590/

  • Huang G, Hu J, He Y, Liu J, Ma M, Shen Z, Wu J, Xu Y, Zhang H, Zhong K, Ning X, Ma Y, Yang H, Yu B, Yang H and Wang Y. (2021). Machine Learning for Electronic Design Automation: A Survey. ACM Transactions on Design Automation of Electronic Systems. 26:5. (1-46). Online publication date: 30-Sep-2021.

    https://doi.org/10.1145/3451179

  • Alawieh M and Pan D. (2021). ADAPT: An Adaptive Machine Learning Framework with Application to Lithography Hotspot Detection 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD). 10.1109/MLCAD52597.2021.9531210. 978-1-6654-3166-8. (1-6).

    https://ieeexplore.ieee.org/document/9531210/

  • Yang H, Li S, Tabery C, Lin B and Yu B. Bridging the Gap Between Layout Pattern Sampling and Hotspot Detection via Batch Active Learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2020.3015903. 40:7. (1464-1475).

    https://ieeexplore.ieee.org/document/9164899/

  • Ye W, Alawieh M, Hsu C, Lin Y and Pan D. (2021). Dealing with Aging and Yield in Scaled Technologies. Dependable Embedded Systems. 10.1007/978-3-030-52017-5_17. (409-429).

    http://link.springer.com/10.1007/978-3-030-52017-5_17

  • Yang H, Li S, Deng Z, Ma Y, Yu B and Young E. GAN-OPC: Mask Optimization With Lithography-Guided Generative Adversarial Nets. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2019.2939329. 39:10. (2822-2834).

    https://ieeexplore.ieee.org/document/8823939/

  • He X, Deng Y, Zhou S, Li R, Wang Y and Guo Y. (2019). Lithography Hotspot Detection with FFT-based Feature Extraction and Imbalanced Learning Rate. ACM Transactions on Design Automation of Electronic Systems. 10.1145/3372044. 25:2. (1-21). Online publication date: 19-Dec-2019.

    http://dl.acm.org/citation.cfm?doid=3375457.3372044

  • Rajavendra Reddy G and Makris Y. (2019). Design Space Exploration for Hotspot Detection 2019 20th International Workshop on Microprocessor/SoC Test, Security and Verification (MTV). 10.1109/MTV48867.2019.00022. 978-1-7281-5025-3. (73-77).

    https://ieeexplore.ieee.org/document/9027232/

  • Yindong X and Xueqian H. (2019). Learning lithography hotspot detection from ImageNet 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 10.1109/ICEMI46757.2019.9101673. 978-1-7281-0510-9. (266-273).

    https://ieeexplore.ieee.org/document/9101673/

  • Reddy G, Madkour K and Makris Y. (2019). Machine Learning-Based Hotspot Detection: Fallacies, Pitfalls and Marching Orders 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 10.1109/ICCAD45719.2019.8942128. 978-1-7281-2350-9. (1-8).

    https://ieeexplore.ieee.org/document/8942128/

  • Lin Y, Li M, Watanabe Y, Kimura T, Matsunawa T, Nojima S and Pan D. Data Efficient Lithography Modeling With Transfer Learning and Active Data Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2018.2864251. 38:10. (1900-1913).

    https://ieeexplore.ieee.org/document/8428441/

  • Chen W, Hsiu P and Kuo T. Enabling Failure-resilient Intermittently-powered Systems Without Runtime Checkpointing. Proceedings of the 56th Annual Design Automation Conference 2019. (1-6).

    https://doi.org/10.1145/3316781.3317816

  • Yang H, Pathak P, Gennari F, Lai Y and Yu B. DeePattern. Proceedings of the 56th Annual Design Automation Conference 2019. (1-6).

    https://doi.org/10.1145/3316781.3317795

  • Li H, Patnaik S, Sengupta A, Yang H, Knechtel J, Yu B, Young E and Sinanoglu O. Attacking Split Manufacturing from a Deep Learning Perspective. Proceedings of the 56th Annual Design Automation Conference 2019. (1-6).

    https://doi.org/10.1145/3316781.3317780

  • Yang H, Su J, Zou Y, Ma Y, Yu B and Young E. (2019). Layout Hotspot Detection With Feature Tensor Generation and Deep Biased Learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 38:6. (1175-1187). Online publication date: 1-Jun-2019.

    https://doi.org/10.1109/TCAD.2018.2837078

  • Ye W, Alawieh M, Li M, Lin Y and Pan D. (2019). Litho-GPA: Gaussian Process Assurance for Lithography Hotspot Detection 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). 10.23919/DATE.2019.8714960. 978-3-9819263-2-3. (54-59).

    https://ieeexplore.ieee.org/document/8714960/

  • Yang H, Pathak P, Gennari F, Lai Y and Yu B. Detecting multi-layer layout hotspots with adaptive squish patterns. Proceedings of the 24th Asia and South Pacific Design Automation Conference. (299-304).

    https://doi.org/10.1145/3287624.3288747

  • Ye W, Lin Y, Li M, Liu Q and Pan D. LithoROC. Proceedings of the 24th Asia and South Pacific Design Automation Conference. (292-298).

    https://doi.org/10.1145/3287624.3288746

  • Jiang B, Zhang H, Yang J and Young E. A fast machine learning-based mask printability predictor for OPC acceleration. Proceedings of the 24th Asia and South Pacific Design Automation Conference. (412-419).

    https://doi.org/10.1145/3287624.3287682

  • Ji Y, Wang Q, Li X and Liu J. A Survey on Tensor Techniques and Applications in Machine Learning. IEEE Access. 10.1109/ACCESS.2019.2949814. 7. (162950-162990).

    https://ieeexplore.ieee.org/document/8884203/

  • Lin Y and Pan D. (2019). Machine Learning in Physical Verification, Mask Synthesis, and Physical Design. Machine Learning in VLSI Computer-Aided Design. 10.1007/978-3-030-04666-8_4. (95-115).

    http://link.springer.com/10.1007/978-3-030-04666-8_4

  • Lin Y, Alawieh M, Ye W and Pan D. (2018). Machine Learning for Yield Learning and Optimization 2018 IEEE International Test Conference (ITC). 10.1109/TEST.2018.8624733. 978-1-5386-8382-8. (1-10).

    https://ieeexplore.ieee.org/document/8624733/

  • Liu Z and Blanton R. (2018). Back-End Layout Reflection for Test Chip Design 2018 IEEE 36th International Conference on Computer Design (ICCD). 10.1109/ICCD.2018.00074. 978-1-5386-8477-1. (456-463).

    https://ieeexplore.ieee.org/document/8615724/

  • Tseng I, Li Y, Perez V, Tripathi V, Lee Z and Yoong Seang Ong J. (2018). An Automated System for Checking Lithography Friendliness of Standard Cells 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 10.1109/APCCAS.2018.8605687. 978-1-5386-8240-1. (261-265).

    https://ieeexplore.ieee.org/document/8605687/

  • Geng H, Yang H, Yu B, Li X and Zeng X. (2018). Sparse VLSI Layout Feature Extraction: A Dictionary Learning Approach 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 10.1109/ISVLSI.2018.00094. 978-1-5386-7099-6. (488-493).

    https://ieeexplore.ieee.org/document/8429415/

  • Yang H, Li S, Ma Y, Yu B and Young E. GAN-OPC. Proceedings of the 55th Annual Design Automation Conference. (1-6).

    https://doi.org/10.1145/3195970.3196056

  • Lin Y, Watanabe Y, Kimura T, Matsunawa T, Nojima S, Li M and Pan D. Data Efficient Lithography Modeling with Residual Neural Networks and Transfer Learning. Proceedings of the 2018 International Symposium on Physical Design. (82-89).

    https://doi.org/10.1145/3177540.3178242

  • Yigit B, Zhang G, Li B, Shi Y and Schlichtmann U. (2017). Application of machine learning methods in post-silicon yield improvement 2017 30th IEEE International System-on-Chip Conference (SOCC). 10.1109/SOCC.2017.8226049. 978-1-5386-4034-0. (243-248).

    http://ieeexplore.ieee.org/document/8226049/

  • Yang H, Lin Y, Yu B and Young E. (2017). Lithography hotspot detection: From shallow to deep learning 2017 30th IEEE International System-on-Chip Conference (SOCC). 10.1109/SOCC.2017.8226047. 978-1-5386-4034-0. (233-238).

    http://ieeexplore.ieee.org/document/8226047/