• Yu X, Wang D and Zhang M. Dimensionality Reduction for Partial Label Learning: A Unified and Adaptive Approach. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2024.3367721. 36:8. (3765-3782).

    https://ieeexplore.ieee.org/document/10440495/

  • Chen W and Crawford V. Bicriteria approximation algorithms for the submodular cover problem. Proceedings of the 37th International Conference on Neural Information Processing Systems. (72705-72716).

    /doi/10.5555/3666122.3669300

  • Sun X and Chai J. (2023). Random forest feature selection for partial label learning. Neurocomputing. 10.1016/j.neucom.2023.126870. 561. (126870). Online publication date: 1-Dec-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231223009931

  • Kumar J, Shao J, Kumar R, Din S, Mawuli C and Yang Q. Online Semi-Supervised Classification on Multilabel Evolving High-Dimensional Text Streams. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 10.1109/TSMC.2023.3275298. 53:10. (5983-5995).

    https://ieeexplore.ieee.org/document/10143404/

  • Duarte J and Berton L. (2023). A review of semi-supervised learning for text classification. Artificial Intelligence Review. 10.1007/s10462-023-10393-8. 56:9. (9401-9469). Online publication date: 1-Sep-2023.

    https://link.springer.com/10.1007/s10462-023-10393-8

  • Bera D, Pratap R and Verma B. Dimensionality Reduction for Categorical Data. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3132373. 35:4. (3658-3671).

    https://ieeexplore.ieee.org/document/9635670/

  • Zhang M, Wu J and Bao W. (2022). Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction. ACM Transactions on Knowledge Discovery from Data. 16:4. (1-18). Online publication date: 31-Aug-2022.

    https://doi.org/10.1145/3494565

  • Gong N and Yao N. (2022). GeSe: Generalized static embedding. Applied Intelligence. 10.1007/s10489-021-03001-1. 52:9. (10148-10160). Online publication date: 1-Jul-2022.

    https://link.springer.com/10.1007/s10489-021-03001-1

  • Abualigah L, Forestiero A and Elaziz M. (2022). Bio-Inspired Agents for a Distributed NLP-Based Clustering in Smart Environments. Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021). 10.1007/978-3-030-96302-6_64. (678-687).

    https://link.springer.com/10.1007/978-3-030-96302-6_64

  • Wang W, Guo B, Shen Y, Yang H, Chen Y and Suo X. (2021). Neural labeled LDA: a topic model for semi-supervised document classification. Soft Computing. 10.1007/s00500-021-06310-2. 25:23. (14561-14571). Online publication date: 1-Dec-2021.

    https://link.springer.com/10.1007/s00500-021-06310-2

  • Zhang K, Cai L, Song Y, Liu T and Zhao Y. (2021). Combining External Medical Knowledge for Improving Obstetric Intelligent Diagnosis: Model Development and Validation. JMIR Medical Informatics. 10.2196/25304. 9:5. (e25304).

    https://medinform.jmir.org/2021/5/e25304

  • Zeng Z, Gao N, Xue C, He Y and Guo X. (2021). Learning from Audience Interaction: Multi-Instance Multi-Label Topic Model for Video Shots Annotating 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). 10.1109/CSCWD49262.2021.9437805. 978-1-7281-6597-4. (1075-1080).

    https://ieeexplore.ieee.org/document/9437805/

  • He J, Li L, Wang Y and Wu X. Hierarchical features-based targeted aspect extraction from online reviews. Intelligent Data Analysis. 10.3233/IDA-194952. 25:1. (205-223).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-194952

  • Forestiero A, Papuzzo G, de Simone R, Forestiero F and Giordano F. (2020). Multiagent approach for resource management in Smart Environments 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). 10.1109/ICCCNT49239.2020.9225346. 978-1-7281-6851-7. (1-5).

    https://ieeexplore.ieee.org/document/9225346/

  • Paulino N, Ferreira J and Cardoso J. Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets. IEEE Access. 10.1109/ACCESS.2020.3017552. 8. (152286-152304).

    https://ieeexplore.ieee.org/document/9170625/

  • Li X, Yang F, Ma Y and Ma H. (2020). Multi-label Classification of Short Text Based on Similarity Graph and Restart Random Walk Model. Intelligent Information Processing X. 10.1007/978-3-030-46931-3_7. (67-77).

    https://link.springer.com/10.1007/978-3-030-46931-3_7

  • Gou Z, Huo Z, Liu Y and Yang Y. (2019). A Method for Constructing Supervised Topic Model Based on Term Frequency-Inverse Topic Frequency. Symmetry. 10.3390/sym11121486. 11:12. (1486).

    https://www.mdpi.com/2073-8994/11/12/1486

  • Mulunda C, Wagacha P and Muchemi L. (2019). Semi-supervised Topic Model for Sequential Data: A Genetic Algorithm Approach 2019 6th International Conference on Soft Computing & Machine Intelligence (ISCMI). 10.1109/ISCMI47871.2019.9004311. 978-1-7281-4577-8. (90-94).

    https://ieeexplore.ieee.org/document/9004311/

  • Wu J and Zhang M. Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (416-424).

    https://doi.org/10.1145/3292500.3330901

  • Clark J and Provost F. (2019). Unsupervised dimensionality reduction versus supervised regularization for classification from sparse data. Data Mining and Knowledge Discovery. 33:4. (871-916). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s10618-019-00616-4

  • Settouti N, Douibi K, Bechar M, Daho M and Saidi M. (2019). Semi-Supervised learning with Collaborative Bagged Multi-label K-Nearest-Neighbors. Open Computer Science. 10.1515/comp-2019-0017. 9:1. (226-242). Online publication date: 1-Jan-2019.. Online publication date: 1-Jan-2019.

    https://www.degruyter.com/document/doi/10.1515/comp-2019-0017/html

  • Zha D and Li C. (2018). Multi-label dataless text classification with topic modeling. Knowledge and Information Systems. 10.1007/s10115-018-1280-0.

    http://link.springer.com/10.1007/s10115-018-1280-0

  • Takanobu R, Huang M, Zhao Z, Li F, Chen H, Zhu X and Nie L. A weakly supervised method for topic segmentation and labeling in goal-oriented dialogues via reinforcement learning. Proceedings of the 27th International Joint Conference on Artificial Intelligence. (4403-4410).

    /doi/10.5555/3304222.3304382

  • Vanegas J, Escalante H and González F. (2018). Semi-supervised Online Kernel Semantic Embedding for Multi-label Annotation. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. 10.1007/978-3-319-75193-1_83. (693-701).

    https://link.springer.com/10.1007/978-3-319-75193-1_83

  • Padmanabhan D, Bhat S, Shevade S and Narahari Y. (2017). Multi-Label Classification from Multiple Noisy Sources Using Topic Models. Information. 10.3390/info8020052. 8:2. (52).

    http://www.mdpi.com/2078-2489/8/2/52