• Fu Y, Yang L, Pan H, Chen Y, Xue G and Ren J. MagSpy: Revealing User Privacy Leakage via Magnetometer on Mobile Devices. IEEE Transactions on Mobile Computing. 10.1109/TMC.2024.3495506. 24:3. (2455-2469).

    https://ieeexplore.ieee.org/document/10750020/

  • Siam S, Ahn H, Liu L, Alam S, Shen H, Cao Z, Shroff N, Krishnamachari B, Srivastava M and Zhang M. (2024). Artificial Intelligence of Things: A Survey. ACM Transactions on Sensor Networks. 21:1. (1-75). Online publication date: 31-Jan-2025.

    https://doi.org/10.1145/3690639

  • Wang H, Zhou H and Cheng S. (2024). Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint. Computer Methods in Applied Mechanics and Engineering. 10.1016/j.cma.2024.117339. 432. (117339). Online publication date: 1-Dec-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0045782524005942

  • Wang G, Guo H, Wang Y, Chen B, Zhou C and Yan Q. (2024). Protecting Activity Sensing Data Privacy Using Hierarchical Information Dissociation 2024 IEEE Conference on Communications and Network Security (CNS). 10.1109/CNS62487.2024.10735551. 979-8-3503-7596-1. (1-9).

    https://ieeexplore.ieee.org/document/10735551/

  • Salehzadeh Niksirat K, Velykoivanenko L, Zufferey N, Cherubini M, Huguenin K and Humbert M. (2024). Wearable Activity Trackers: A Survey on Utility, Privacy, and Security. ACM Computing Surveys. 56:7. (1-40). Online publication date: 31-Jul-2024.

    https://doi.org/10.1145/3645091

  • Yuan M, Zhang L, He F, Tong X, Song M, Xu Z and Li X. InFi: End-to-End Learning to Filter Input for Resource-Efficiency in Mobile-Centric Inference. IEEE Transactions on Mobile Computing. 10.1109/TMC.2023.3275981. (1-16).

    https://ieeexplore.ieee.org/document/10124356/

  • Yin Y, Xie L, Jiang Z, Xiao F, Cao J and Lu S. A Systematic Review of Human Activity Recognition Based on Mobile Devices: Overview, Progress and Trends. IEEE Communications Surveys & Tutorials. 10.1109/COMST.2024.3357591. 26:2. (890-929).

    https://ieeexplore.ieee.org/document/10413312/

  • Guo X, Wang Y, Cheng J and Chen Y. (2024). Personalized Fitness Assistance Using Commodity WiFi. Mobile Technologies for Smart Healthcare System Design. 10.1007/978-3-031-57345-3_3. (49-82).

    https://link.springer.com/10.1007/978-3-031-57345-3_3

  • Zhang L, Zheng D, Yuan M, Han F, Wu Z, Liu M and Li X. (2023). MultiSense: Cross-labelling and Learning Human Activities Using Multimodal Sensing Data. ACM Transactions on Sensor Networks. 19:3. (1-26). Online publication date: 31-Aug-2023.

    https://doi.org/10.1145/3578267

  • Li Z, Zhang L, Yuan M, Song M and Song Q. (2023). Efficient Deep Ensemble Inference via Query Difficulty-dependent Task Scheduling 2023 IEEE 39th International Conference on Data Engineering (ICDE). 10.1109/ICDE55515.2023.00082. 979-8-3503-2227-9. (1005-1018).

    https://ieeexplore.ieee.org/document/10184802/

  • Zhu B, Wei Q, Li L, Yang Z, Liu W, You Z, Zhou J, Li P, Song J, Liu S, Li D and Li J. (2023). RF Sign. Wireless Communications & Mobile Computing. 2023. Online publication date: 1-Jan-2023.

    https://doi.org/10.1155/2023/1341193

  • Dietrich A, Jain K, Gutjahr G, Steffes B and Sorge C. (2023). I recognize you by your steps. Computers and Security. 124:C. Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.cose.2022.102994

  • Zhang Y, Gao B, Yang D, Woo W and Wen H. Online Learning of Wearable Sensing for Human Activity Recognition. IEEE Internet of Things Journal. 10.1109/JIOT.2022.3188785. 9:23. (24315-24327).

    https://ieeexplore.ieee.org/document/9816056/

  • Yuan M, Zhang L, He F, Tong X and Li X. InFi. Proceedings of the 28th Annual International Conference on Mobile Computing And Networking. (228-241).

    https://doi.org/10.1145/3495243.3517016

  • Li F, Wang Y, Zhou Y, Feng Q, Xu K and Li X. (2022). Event Co-reference Disambiguation with Enhanced Semantics of Multi-layer Attention 2022 8th International Conference on Big Data Computing and Communications (BigCom). 10.1109/BigCom57025.2022.00039. 978-1-6654-7384-2. (251-260).

    https://ieeexplore.ieee.org/document/10064444/

  • Zhang J, Wang Z and Yan Q. (2021). Intelligent user identity authentication in vehicle security system based on wireless signals. Complex & Intelligent Systems. 10.1007/s40747-021-00593-6. 8:2. (1243-1257). Online publication date: 1-Apr-2022.

    https://link.springer.com/10.1007/s40747-021-00593-6

  • Zhang S, Li Y, Zhang S, Shahabi F, Xia S, Deng Y and Alshurafa N. (2022). Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors. 10.3390/s22041476. 22:4. (1476).

    https://www.mdpi.com/1424-8220/22/4/1476

  • Cai C, Zheng R and Luo J. Ubiquitous Acoustic Sensing on Commodity IoT Devices: A Survey. IEEE Communications Surveys & Tutorials. 10.1109/COMST.2022.3145856. 24:1. (432-454).

    https://ieeexplore.ieee.org/document/9693416/

  • Wang J and Luo J. (2021). No Perfect Outdoors: Towards a Deep Profiling of GNSS-Based Location Contexts. Future Internet. 10.3390/fi14010007. 14:1. (7).

    https://www.mdpi.com/1999-5903/14/1/7

  • Zhang L, Zheng D, Wu Z, Liu M, Yuan M, Han F and Li X. (2021). MultiSense: Cross Labelling and Learning Human Activities Using Multimodal Sensing Data 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). 10.1109/MASS52906.2021.00057. 978-1-6654-4935-9. (401-409).

    https://ieeexplore.ieee.org/document/9637745/

  • Wu D, Xu H, Jiang Z, Yu W, Wei X and Lu J. EdgeLSTM: Towards Deep and Sequential Edge Computing for IoT Applications. IEEE/ACM Transactions on Networking. 10.1109/TNET.2021.3075468. 29:4. (1895-1908).

    https://ieeexplore.ieee.org/document/9422203/

  • Lakoju M, Ajienka N, Khanesar M, Burnap P and Branson D. (2021). Unsupervised Learning for Product Use Activity Recognition: An Exploratory Study of a “Chatty Device”. Sensors. 10.3390/s21154991. 21:15. (4991).

    https://www.mdpi.com/1424-8220/21/15/4991

  • Pan H, Yang L, Li H, You C, Ji X, Chen Y, Hu Z and Xue G. (2021). MagThief: Stealing Private App Usage Data on Mobile Devices via Built-in Magnetometer 2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). 10.1109/SECON52354.2021.9491601. 978-1-6654-4108-7. (1-9).

    https://ieeexplore.ieee.org/document/9491601/

  • Zhang Y, Zheng Y, Qian K, Zhang G, Liu Y, Wu C and Yang Z. Widar3.0: Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2021.3105387. (1-1).

    https://ieeexplore.ieee.org/document/9516988/

  • Iloga S, Bordat A, Le Kernec J and Romain O. Human Activity Recognition Based on Acceleration Data From Smartphones Using HMMs. IEEE Access. 10.1109/ACCESS.2021.3117336. 9. (139336-139351).

    https://ieeexplore.ieee.org/document/9557268/

  • Yang Z, Qian K, Wu C and Zhang Y. (2021). Human Gesture Recognition with Wi-Fi. Smart Wireless Sensing. 10.1007/978-981-16-5658-3_9. (183-214).

    https://link.springer.com/10.1007/978-981-16-5658-3_9

  • Ahad M, Antar A and Ahmed M. (2021). Deep Learning for Sensor-Based Activity Recognition: Recent Trends. IoT Sensor-Based Activity Recognition. 10.1007/978-3-030-51379-5_9. (149-173).

    http://link.springer.com/10.1007/978-3-030-51379-5_9

  • Park J and Kim S. (2020). Machine Learning-Based Activity Pattern Classification Using Personal PM2.5 Exposure Information. International Journal of Environmental Research and Public Health. 10.3390/ijerph17186573. 17:18. (6573).

    https://www.mdpi.com/1660-4601/17/18/6573

  • Wang E, Qu Z, Liang X, Meng X, Yang Y, Li D and Meng W. (2020). Storage Management Strategy in Mobile Phones for Photo Crowdsensing. Sensors. 10.3390/s20082199. 20:8. (2199).

    https://www.mdpi.com/1424-8220/20/8/2199

  • Unger M and Tuzhilin A. Hierarchical Latent Context Representation for Context-Aware Recommendations. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.3022102. (1-1).

    https://ieeexplore.ieee.org/document/9187582/

  • Zhu Y, Wang D, Zhao R, Zhang Q and Huang A. FitAssist. Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. (328-337).

    https://doi.org/10.1145/3360774.3360817

  • Yang K, Xing T, Liu Y, Li Z, Gong X, Chen X and Fang D. (2019). cDeepArch. IEEE/ACM Transactions on Networking. 27:5. (2043-2055). Online publication date: 1-Oct-2019.

    https://doi.org/10.1109/TNET.2019.2936939

  • Li X, Liu H, Zhang L, Wu Z, Xie Y, Chen G, Wan C and Liang Z. (2019). Finding the Stars in the Fireworks. IEEE/ACM Transactions on Networking. 27:5. (1945-1958). Online publication date: 1-Oct-2019.

    https://doi.org/10.1109/TNET.2019.2933269

  • Zhang X, Wong Y, Kankanhalli M, Geng W and Zhang J. (2019). Hierarchical multi-view aggregation network for sensor-based human activity recognition. PLOS ONE. 10.1371/journal.pone.0221390. 14:9. (e0221390).

    http://dx.plos.org/10.1371/journal.pone.0221390

  • Zhang L, Zheng D, Wu Z, Liu M, Yuan M, Han F and Li X. Poster. The 25th Annual International Conference on Mobile Computing and Networking. (1-3).

    https://doi.org/10.1145/3300061.3343407

  • Kang S, Choi H, Park S, Park C, Lee J, Lee U and Lee S. Fire in Your Hands. The 25th Annual International Conference on Mobile Computing and Networking. (1-16).

    https://doi.org/10.1145/3300061.3300128

  • Wu D, Li Z, Wang J, Zheng Y, Li M and Huang Q. Vision and Challenges for Knowledge Centric Networking. IEEE Wireless Communications. 10.1109/MWC.2019.1800323. 26:4. (117-123).

    https://ieeexplore.ieee.org/document/8685777/

  • Sousa Lima W, Souto E, El-Khatib K, Jalali R and Gama J. (2019). Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview. Sensors. 10.3390/s19143213. 19:14. (3213).

    https://www.mdpi.com/1424-8220/19/14/3213

  • Liu Y, Li Z, Liu Z and Wu K. Real-time Arm Skeleton Tracking and Gesture Inference Tolerant to Missing Wearable Sensors. Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services. (287-299).

    https://doi.org/10.1145/3307334.3326109

  • Zheng Y, Zhang Y, Qian K, Zhang G, Liu Y, Wu C and Yang Z. Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi. Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services. (313-325).

    https://doi.org/10.1145/3307334.3326081

  • Yuan B, Zhou X, Teng X and Guo D. (2019). Enabling entity discovery in indoor commercial environments without pre-deployed infrastructure. Frontiers of Computer Science: Selected Publications from Chinese Universities. 13:3. (618-636). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s11704-017-6601-z

  • Cai C, Hu M, Ma X, Peng K and Liu J. Accurate Ranging on Acoustic-Enabled IoT Devices. IEEE Internet of Things Journal. 10.1109/JIOT.2018.2879371. 6:2. (3164-3174).

    https://ieeexplore.ieee.org/document/8520834/

  • Rawassizadeh R, Dobbins C, Akbari M and Pazzani M. (2019). Indexing Multivariate Mobile Data through Spatio-Temporal Event Detection and Clustering. Sensors. 10.3390/s19030448. 19:3. (448).

    https://www.mdpi.com/1424-8220/19/3/448

  • Liu Y, Kong L and Chen G. Data-Oriented Mobile Crowdsensing: A Comprehensive Survey. IEEE Communications Surveys & Tutorials. 10.1109/COMST.2019.2910855. 21:3. (2849-2885).

    https://ieeexplore.ieee.org/document/8689081/

  • Ma P, Zou T and Wang Y. (2019). Research on Human Behavior Recognition Based on Convolutional Neural Network. Wireless Sensor Networks. 10.1007/978-981-13-6834-9_12. (131-144).

    http://link.springer.com/10.1007/978-981-13-6834-9_12

  • Guo X, Liu J, Shi C, Liu H, Chen Y and Chuah M. (2018). Device-free Personalized Fitness Assistant Using WiFi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 2:4. (1-23). Online publication date: 27-Dec-2018.

    https://doi.org/10.1145/3287043

  • Zhou Q, Xing J, Chen W, Zhang X and Yang Q. (2018). From Signal to Image: Enabling Fine-Grained Gesture Recognition with Commercial Wi-Fi Devices. Sensors. 10.3390/s18093142. 18:9. (3142).

    https://www.mdpi.com/1424-8220/18/9/3142

  • Yang Y, Liu W, Wang E and Wang H. (2018). Beaconing Control strategy based on Game Theory in mobile crowdsensing. Future Generation Computer Systems. 10.1016/j.future.2018.04.013. 86. (222-233). Online publication date: 1-Sep-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0167739X17320009

  • Xie B, Li B and Harland A. Movement and Gesture Recognition Using Deep Learning and Wearable-sensor Technology. Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition. (26-31).

    https://doi.org/10.1145/3268866.3268890

  • Yang K, Gong X, Liu Y, Li Z, Xing T, Chen X and Fang D. (2018). cDeepArch: A Compact Deep Neural Network Architecture for Mobile Sensing 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). 10.1109/SAHCN.2018.8397117. 978-1-5386-4281-8. (1-9).

    https://ieeexplore.ieee.org/document/8397117/

  • Liu H, Li X, Zhang L, Xie Y, Wu Z, Dai Q, Chen G and Wan C. (2018). Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 10.1109/INFOCOM.2018.8486226. 978-1-5386-4128-6. (126-134).

    https://ieeexplore.ieee.org/document/8486226/

  • Lu C, Du B, Wen H, Wang S, Markham A, Martinovic I, Shen Y and Trigoni N. (2018). Snoopy. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1:4. (1-29). Online publication date: 8-Jan-2018.

    https://doi.org/10.1145/3161196

  • Du J, Liu S, Wei Y, Liu H, Wang X and Nan K. (2018). Understanding Sensor Data Using Deep Learning Methods on Resource-Constrained Edge Devices. Wireless Sensor Networks. 10.1007/978-981-10-8123-1_13. (139-152).

    http://link.springer.com/10.1007/978-981-10-8123-1_13

  • Chen L, Chen X, Ni L, Peng Y and Fang D. Human Behavior Recognition Using Wi-Fi CSI: Challenges and Opportunities. IEEE Communications Magazine. 10.1109/MCOM.2017.1700081. 55:10. (112-117).

    http://ieeexplore.ieee.org/document/8067695/