• Wang W, Li D, Kang Y and Zhao Y. (2024). An intelligent java method name recommendation framework via two-phase neural networks. Empirical Software Engineering. 10.1007/s10664-024-10574-1. 30:1. Online publication date: 1-Feb-2025.

    https://link.springer.com/10.1007/s10664-024-10574-1

  • Yoon D, Wang Y, Yu M, Huang E, Jones J, Kukkadapu A, Kocas O, Wiepert J, Goenka K, Chen S, Lin Y, Huang Z, Kong J, Chow M and Tang C. FBDetect: Catching Tiny Performance Regressions at Hyperscale through In-Production Monitoring. Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. (522-540).

    https://doi.org/10.1145/3694715.3695977

  • Niu F, Zhang E, Mayr-Dorn C, Assunção W, Huang L, Ge J, Luo B and Egyed A. (2024). An extensive replication study of the ABLoTS approach for bug localization. Empirical Software Engineering. 10.1007/s10664-024-10537-6. 29:6. Online publication date: 1-Nov-2024.

    https://link.springer.com/10.1007/s10664-024-10537-6

  • Wu Y, Wen M, Yu Z, Guo X and Jin H. Effective Vulnerable Function Identification based on CVE Description Empowered by Large Language Models. Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering. (393-405).

    https://doi.org/10.1145/3691620.3695013

  • Lyu Y, Kang H, Widyasari R, Lawall J and Lo D. (2024). Evaluating SZZ Implementations: An Empirical Study on the Linux Kernel. IEEE Transactions on Software Engineering. 50:9. (2219-2239). Online publication date: 1-Sep-2024.

    https://doi.org/10.1109/TSE.2024.3406718

  • Vacheret R, Pérez F, Ziadi T and Hillah L. (2024). Boosting fault localization of statements by combining topic modeling and Ochiai. Information and Software Technology. 10.1016/j.infsof.2024.107499. 173. (107499). Online publication date: 1-Sep-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0950584924001046

  • Farzandway M and Ghassemi F. (2024). SpecNLP: A Pre-trained Model Enhanced with Spectrum Profile for Bug Localization 2024 IEEE International Conference on Artificial Intelligence Testing (AITest). 10.1109/AITest62860.2024.00018. 979-8-3503-6505-4. (81-86).

    https://ieeexplore.ieee.org/document/10685187/

  • Yu G, Chen P, He Z, Yan Q, Luo Y, Li F and Zheng Z. (2024). ChangeRCA: Finding Root Causes from Software Changes in Large Online Systems. Proceedings of the ACM on Software Engineering. 1:FSE. (24-46). Online publication date: 12-Jul-2024.

    https://doi.org/10.1145/3643728

  • Gu K, Zhang Y, Cao J, Tan X and Yang M. How Well Industry-Level Cause Bisection Works in Real-World: A Study on Linux Kernel. Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering. (62-73).

    https://doi.org/10.1145/3663529.3663828

  • Wimalasooriya C, Licorish S, da Costa D and MacDonell S. (2024). Just-in-Time crash prediction for mobile apps. Empirical Software Engineering. 10.1007/s10664-024-10455-7. 29:3. Online publication date: 1-May-2024.

    https://link.springer.com/10.1007/s10664-024-10455-7

  • Wang Y, Chen L, Gao C, Fang Y and Li Y. (2024). Prompt enhance API recommendation: visualize the user’s real intention behind this query. Automated Software Engineering. 10.1007/s10515-024-00425-0. 31:1. Online publication date: 1-May-2024.

    https://link.springer.com/10.1007/s10515-024-00425-0

  • Chakraborty P, Arumugam V and Nagappan M. Aligning Programming Language and Natural Language: Exploring Design Choices in Multi-Modal Transformer-Based Embedding for Bug Localization. Proceedings of the Third ACM/IEEE International Workshop on NL-based Software Engineering. (1-8).

    https://doi.org/10.1145/3643787.3648028

  • Song Y, Xie X and Xu B. (2024). When debugging encounters artificial intelligence: state of the art and open challenges. Science China Information Sciences. 10.1007/s11432-022-3803-9. 67:4. Online publication date: 1-Apr-2024.

    https://link.springer.com/10.1007/s11432-022-3803-9

  • Wang D, Galster M and Morales-Trujillo M. (2024). A systematic mapping study of bug reproduction and localization. Information and Software Technology. 165:C. Online publication date: 1-Jan-2024.

    https://doi.org/10.1016/j.infsof.2023.107338

  • Ren W. Gamification in Test-Driven Development Practice. Proceedings of the 2nd International Workshop on Gamification in Software Development, Verification, and Validation. (38-46).

    https://doi.org/10.1145/3617553.3617889

  • Du Y and Yu Z. Pre-training Code Representation with Semantic Flow Graph for Effective Bug Localization. Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (579-591).

    https://doi.org/10.1145/3611643.3616338

  • Rahman M and Roy C. (2023). A Systematic Review of Automated Query Reformulations in Source Code Search. ACM Transactions on Software Engineering and Methodology. 32:6. (1-79). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3607179

  • Assi M, Hassan S, Georgiou S and Zou Y. (2023). Predicting the Change Impact of Resolving Defects by Leveraging the Topics of Issue Reports in Open Source Software Systems. ACM Transactions on Software Engineering and Methodology. 32:6. (1-34). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3593802

  • Hassan F, Meng N and Wang X. (2023). UniLoc: Unified Fault Localization of Continuous Integration Failures. ACM Transactions on Software Engineering and Methodology. 32:6. (1-31). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3593799

  • Guo Z, Yan M, Li H, Chen Z and Sun W. (2023). Just-In-Time Method Name Updating With Heuristics and Neural Model 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS). 10.1109/QRS60937.2023.00074. 979-8-3503-1958-3. (707-718).

    https://ieeexplore.ieee.org/document/10366565/

  • Yang L, Chen J, You H, Han J, Jiang J, Sun Z, Lin X, Liang F and Kang Y. (2023). Can Code Representation Boost IR-Based Test Case Prioritization? 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE59848.2023.00077. 979-8-3503-1594-3. (240-251).

    https://ieeexplore.ieee.org/document/10301207/

  • Xiao X, Xiao R, Li Q, Lv J, Cui S and Liu Q. (2023). BugRadar. Information and Software Technology. 162:C. Online publication date: 1-Oct-2023.

    https://doi.org/10.1016/j.infsof.2023.107274

  • Song X, Wu Y, Cao J, Chen B, Lin Y, Lu Z, Wang D and Peng X. (2023). BugMiner: Automating Precise Bug Dataset Construction by Code Evolution History Mining 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). 10.1109/ASE56229.2023.00201. 979-8-3503-2996-4. (1919-1929).

    https://ieeexplore.ieee.org/document/10298435/

  • Nadim M and Roy B. (2022). Utilizing source code syntax patterns to detect bug inducing commits using machine learning models. Software Quality Journal. 10.1007/s11219-022-09611-3. 31:3. (775-807). Online publication date: 1-Sep-2023.

    https://link.springer.com/10.1007/s11219-022-09611-3

  • Ma Y, Du Y and Li M. Capturing the long-distance dependency in the control flow graph via structural-guided attention for bug localization. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. (2242-2250).

    https://doi.org/10.24963/ijcai.2023/249

  • zhao Y, Li X, Tian Q, Deng W, Li Y, Zhang Y, Song J, Yang L and Tan W. (2023). Impact analysis of bug localization accuracy oriented to bug report 6th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE 2023). 10.1117/12.3004582. 9781510668249. (42).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12787/3004582/Impact-analysis-of-bug-localization-accuracy-oriented-to-bug-report/10.1117/12.3004582.full

  • Ren W and Barrett S. (2023). Test‐driven development, engagement in activity, and maintainability. IET Software. 17:4. (509-525). Online publication date: 27-Jul-2023.

    https://doi.org/10.1049/sfw2.12135

  • Wang Y, Chen J, Huang Q, Xia X and Jiang B. (2023). Deep learning-based open API recommendation for Mashup development. Science China Information Sciences. 10.1007/s11432-021-3531-0. 66:7. Online publication date: 1-Jul-2023.

    https://link.springer.com/10.1007/s11432-021-3531-0

  • Liu W and Chen T. SLocator: Localizing the Origin of SQL Queries in Database-Backed Web Applications. IEEE Transactions on Software Engineering. 10.1109/TSE.2023.3253700. 49:6. (3376-3390).

    https://ieeexplore.ieee.org/document/10061567/

  • You H, Wang Z, Chen J, Liu S and Li S. Regression Fuzzing for Deep Learning Systems. Proceedings of the 45th International Conference on Software Engineering. (82-94).

    https://doi.org/10.1109/ICSE48619.2023.00019

  • Niu F, Mayr-Dorn C, Assunção W, Huang L, Ge J, Luo B and Egyed A. (2023). The ABLoTS Approach for Bug Localization: is it replicable and generalizable? 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). 10.1109/MSR59073.2023.00083. 979-8-3503-1184-6. (576-587).

    https://ieeexplore.ieee.org/document/10173939/

  • Motwani M and Brun Y. (2023). Better Automatic Program Repair by Using Bug Reports and Tests Together 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00109. 978-1-6654-5701-9. (1225-1237).

    https://ieeexplore.ieee.org/document/10172693/

  • An G, Hong J, Kim N and Yoo S. (2023). Fonte: Finding Bug Inducing Commits from Failures 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00059. 978-1-6654-5701-9. (589-601).

    https://ieeexplore.ieee.org/document/10172540/

  • Niu F, Assunção W, Huang L, Mayr-Dorn C, Ge J, Luo B and Egyed A. (2023). RAT: A Refactoring-Aware Traceability Model for Bug Localization 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00028. 978-1-6654-5701-9. (196-207).

    https://ieeexplore.ieee.org/document/10172549/

  • Xia X and Lo D. (2023). Information Retrieval‐Based Techniques for Software Fault Localization. Handbook of Software Fault Localization. 10.1002/9781119880929.ch8. (365-391). Online publication date: 20-Apr-2023.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119880929.ch8

  • Grazia L, Bredl P and Pradel M. DiffSearch: A Scalable and Precise Search Engine for Code Changes. IEEE Transactions on Software Engineering. 10.1109/TSE.2022.3218859. 49:4. (2366-2380).

    https://ieeexplore.ieee.org/document/9935264/

  • Wen M, Xie Z, Luo K, Chen X, Yang Y and Jin H. Effective Isolation of Fault-Correlated Variables via Statistical and Mutation Analysis. IEEE Transactions on Software Engineering. 10.1109/TSE.2022.3209590. 49:4. (2053-2068).

    https://ieeexplore.ieee.org/document/9903287/

  • Zuo Z, Niu X, Zhang S, Fang L, Khoo S, Lu S, Sun C and Xu G. (2023). Toward More Efficient Statistical Debugging with Abstraction Refinement. ACM Transactions on Software Engineering and Methodology. 32:2. (1-38). Online publication date: 31-Mar-2023.

    https://doi.org/10.1145/3544790

  • Khanfir A, Koyuncu A, Papadakis M, Cordy M, Bissyandé T, Klein J and Le Traon Y. (2023). iBiR: Bug-report-driven Fault Injection. ACM Transactions on Software Engineering and Methodology. 32:2. (1-31). Online publication date: 31-Mar-2023.

    https://doi.org/10.1145/3542946

  • Pârţachi P, White D and Barr E. (2023). Aide-mémoire: Improving a Project’s Collective Memory via Pull Request–Issue Links. ACM Transactions on Software Engineering and Methodology. 32:2. (1-36). Online publication date: 31-Mar-2023.

    https://doi.org/10.1145/3542937

  • Jin W, Zhong D, Cai Y, Kazman R and Liu T. Evaluating the Impact of Possible Dependencies on Architecture-Level Maintainability. IEEE Transactions on Software Engineering. 10.1109/TSE.2022.3171288. 49:3. (1064-1085).

    https://ieeexplore.ieee.org/document/9765666/

  • Tsumita S, Hayashi S and Amasaki S. (2023). Large-Scale Evaluation of Method-Level Bug Localization with FinerBench4BL 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER56733.2023.00094. 978-1-6654-5278-6. (815-824).

    https://ieeexplore.ieee.org/document/10123567/

  • Yang Y, Wang Z, Chen Z and Xu B. (2022). Context-Aware Program Simplification to Improve Information Retrieval-Based Bug Localization 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). 10.1109/QRS57517.2022.00035. 978-1-6654-7704-8. (252-263).

    https://ieeexplore.ieee.org/document/10062435/

  • Di Grazia L and Pradel M. The evolution of type annotations in python: an empirical study. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (209-220).

    https://doi.org/10.1145/3540250.3549114

  • Ngo C, Pastore F and Briand L. (2022). Automated, Cost-effective, and Update-driven App Testing. ACM Transactions on Software Engineering and Methodology. 31:4. (1-51). Online publication date: 31-Oct-2022.

    https://doi.org/10.1145/3502297

  • Chen A, Chen T and Chen J. How Useful is Code Change Information for Fault Localization in Continuous Integration?. Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. (1-12).

    https://doi.org/10.1145/3551349.3556931

  • Sohn J and Papadakis M. (2022). CEMENT: On the Use of Evolutionary Coupling Between Tests and Code Units. A Case Study on Fault Localization 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE55969.2022.00023. 978-1-6654-5132-1. (133-144).

    https://ieeexplore.ieee.org/document/9978960/

  • Wen W, Zhao T, Wang S, Chu J and Kumar Jain D. (2022). Code recommendation based on joint embedded attention network. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 26:17. (8635-8645). Online publication date: 1-Sep-2022.

    https://doi.org/10.1007/s00500-022-07244-z

  • Wang G, Wang W and Li D. A Hybrid Pattern Knowledge Graph-Based API Recommendation Approach. Artificial Intelligence. (465-476).

    https://doi.org/10.1007/978-3-031-20503-3_37

  • Jarman D, Berry J, Smith R, Thung F and Lo D. (2022). Legion: Massively Composing Rankers for Improved Bug Localization at Adobe. IEEE Transactions on Software Engineering. 48:8. (3010-3024). Online publication date: 1-Aug-2022.

    https://doi.org/10.1109/TSE.2021.3075215

  • Chen A, Chen T and Wang S. (2022). Pathidea: Improving Information Retrieval-Based Bug Localization by Re-Constructing Execution Paths Using Logs. IEEE Transactions on Software Engineering. 48:8. (2905-2919). Online publication date: 1-Aug-2022.

    https://doi.org/10.1109/TSE.2021.3071473

  • Ni Z, Bo L, Li B, Chen T, Sun X and Wu X. (2022). An approach of method‐level bug localization. IET Software. 10.1049/sfw2.12060. 16:4. (422-437). Online publication date: 1-Aug-2022.

    https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12060

  • Florez J, Perry J, Wei S and Marcus A. Retrieving data constraint implementations using fine-grained code patterns. Proceedings of the 44th International Conference on Software Engineering. (1893-1905).

    https://doi.org/10.1145/3510003.3510167

  • Zhang C, Chen B, Peng X and Zhao W. BuildSheriff. Proceedings of the 44th International Conference on Software Engineering. (312-324).

    https://doi.org/10.1145/3510003.3510132

  • Cao J, Li M, Chen X, Wen M, Tian Y, Wu B and Cheung S. DeepFD. Proceedings of the 44th International Conference on Software Engineering. (573-585).

    https://doi.org/10.1145/3510003.3510099

  • Ciborowska A and Damevski K. Fast changeset-based bug localization with BERT. Proceedings of the 44th International Conference on Software Engineering. (946-957).

    https://doi.org/10.1145/3510003.3510042

  • Kim M, Kim Y and Lee E. How does the first buggy file work well for iterative IR-based bug localization?. Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. (1509-1516).

    https://doi.org/10.1145/3477314.3507034

  • Rodriguez-Perez G, Nagappan M and Robles G. Watch Out for Extrinsic Bugs! A Case Study of Their Impact in Just-In-Time Bug Prediction Models on the OpenStack Project. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.3021380. 48:4. (1400-1416).

    https://ieeexplore.ieee.org/document/9185031/

  • Kim M, Kim Y and Lee E. (2022). An Empirical Study of IR-based Bug Localization for Deep Learning-based Software 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). 10.1109/ICST53961.2022.00024. 978-1-6654-6679-0. (128-139).

    https://ieeexplore.ieee.org/document/9787910/

  • Qi B, Sun H, Yuan W, Zhang H and Meng X. DreamLoc: A Deep Relevance Matching-Based Framework for bug Localization. IEEE Transactions on Reliability. 10.1109/TR.2021.3104728. 71:1. (235-249).

    https://ieeexplore.ieee.org/document/9566596/

  • Yang J, Yang Y, Sun M, Wen M, Zhou Y and Jin H. (2022). Isolating Compiler Optimization Faults via Differentiating Finer-grained Options 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER53432.2022.00065. 978-1-6654-3786-8. (481-491).

    https://ieeexplore.ieee.org/document/9825818/

  • Yang Y, He T, Feng Y, Liu S and Xu B. (2022). Mining Python fix patterns via analyzing fine-grained source code changes. Empirical Software Engineering. 27:2. Online publication date: 1-Mar-2022.

    https://doi.org/10.1007/s10664-021-10087-1

  • Li W, Li Q, Ming Y, Dai W, Ying S and Yuan M. (2022). An empirical study of the effectiveness of IR-based bug localization for large-scale industrial projects. Empirical Software Engineering. 27:2. Online publication date: 1-Mar-2022.

    https://doi.org/10.1007/s10664-021-10082-6

  • Yan M, Xia X, Fan Y, Hassan A, Lo D and Li S. (2022). Just-In-Time Defect Identification and Localization: A Two-Phase Framework. IEEE Transactions on Software Engineering. 48:1. (82-101). Online publication date: 1-Jan-2022.

    https://doi.org/10.1109/TSE.2020.2978819

  • Sun X, Li L, Mercaldo F, Yang Y, Santone A and Martinelli F. Automated Intention Mining with Comparatively Fine-tuning BERT. Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval. (157-162).

    https://doi.org/10.1145/3508230.3508254

  • Sun X, Zhou T, Wang R, Duan Y, Bo L and Chang J. (2021). Experience report: investigating bug fixes in machine learning frameworks/libraries. Frontiers of Computer Science: Selected Publications from Chinese Universities. 15:6. Online publication date: 1-Dec-2021.

    https://doi.org/10.1007/s11704-020-9441-1

  • Tan X, Zhang Y, Mi C, Cao J, Sun K, Lin Y and Yang M. Locating the Security Patches for Disclosed OSS Vulnerabilities with Vulnerability-Commit Correlation Ranking. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. (3282-3299).

    https://doi.org/10.1145/3460120.3484593

  • Wen M, Chen J, Tian Y, Wu R, Hao D, Han S and Cheung S. Historical Spectrum Based Fault Localization. IEEE Transactions on Software Engineering. 10.1109/TSE.2019.2948158. 47:11. (2348-2368).

    https://ieeexplore.ieee.org/document/8873606/

  • Rahman M, Khomh F, Yeasmin S and Roy C. (2021). The forgotten role of search queries in IR-based bug localization: an empirical study. Empirical Software Engineering. 26:6. Online publication date: 1-Nov-2021.

    https://doi.org/10.1007/s10664-021-10022-4

  • Razzaq A, Buckley J, Patten J, Chochlov M and Sai A. (2021). BoostNSift: A Query Boosting and Code Sifting Technique for Method Level Bug Localization 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM). 10.1109/SCAM52516.2021.00019. 978-1-6654-4897-0. (81-91).

    https://ieeexplore.ieee.org/document/9610655/

  • Ciborowska A, Chakarov A and Pandita R. (2021). Contemporary COBOL: Developers' Perspectives on Defects and Defect Location 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME52107.2021.00027. 978-1-6654-2882-8. (227-238).

    https://ieeexplore.ieee.org/document/9609180/

  • An G and Yoo S. Reducing the search space of bug inducing commits using failure coverage. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1459-1462).

    https://doi.org/10.1145/3468264.3473129

  • Sejfia A, Zhao Y and Medvidović N. Identifying casualty changes in software patches. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (304-315).

    https://doi.org/10.1145/3468264.3468624

  • Wang S, Wen M, Lin B and Mao X. Lightweight global and local contexts guided method name recommendation with prior knowledge. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (741-753).

    https://doi.org/10.1145/3468264.3468567

  • Takahashi A, Sae-Lim N, Hayashi S and Saeki M. (2021). An extensive study on smell-aware bug localization. Journal of Systems and Software. 10.1016/j.jss.2021.110986. 178. (110986). Online publication date: 1-Aug-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0164121221000832

  • Murali V, Gross L, Qian R and Chandra S. Industry-scale IR-based bug localization. Proceedings of the 43rd International Conference on Software Engineering: Software Engineering in Practice. (188-197).

    https://doi.org/10.1109/ICSE-SEIP52600.2021.00028

  • Motwani M. High-quality automated program repair. Proceedings of the 43rd International Conference on Software Engineering: Companion Proceedings. (309-314).

    https://doi.org/10.1109/ICSE-Companion52605.2021.00134

  • Wang H, Xia X, Lo D, Grundy J and Wang X. Automatic Solution Summarization for Crash Bugs. Proceedings of the 43rd International Conference on Software Engineering. (1286-1297).

    https://doi.org/10.1109/ICSE43902.2021.00117

  • Rosa G, Pascarella L, Scalabrino S, Tufano R, Bavota G, Lanza M and Oliveto R. Evaluating SZZ Implementations Through a Developer-informed Oracle. Proceedings of the 43rd International Conference on Software Engineering. (436-447).

    https://doi.org/10.1109/ICSE43902.2021.00049

  • Kim M and Lee E. (2021). Are datasets for information retrieval-based bug localization techniques trustworthy?. Empirical Software Engineering. 26:3. Online publication date: 1-May-2021.

    https://doi.org/10.1007/s10664-021-09946-8

  • Sohn J, Kamei Y, McIntosh S and Yoo S. (2021). Leveraging Fault Localisation to Enhance Defect Prediction 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER50967.2021.00034. 978-1-7281-9630-5. (284-294).

    https://ieeexplore.ieee.org/document/9425917/

  • Florez J, Chaparro O, Treude C and Marcus A. (2021). Combining Query Reduction and Expansion for Text-Retrieval-Based Bug Localization 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER50967.2021.00024. 978-1-7281-9630-5. (166-176).

    https://ieeexplore.ieee.org/document/9425990/

  • Perez A, Abreu R and Van Deursen A. (2021). A Theoretical and Empirical Analysis of Program Spectra Diagnosability. IEEE Transactions on Software Engineering. 47:2. (412-431). Online publication date: 1-Feb-2021.

    https://doi.org/10.1109/TSE.2019.2895640

  • Zou D, Liang J, Xiong Y, Ernst M and Zhang L. (2021). An Empirical Study of Fault Localization Families and Their Combinations. IEEE Transactions on Software Engineering. 47:2. (332-347). Online publication date: 1-Feb-2021.

    https://doi.org/10.1109/TSE.2019.2892102

  • Li Z, Chen T and Shang W. Where shall we log?. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. (361-372).

    https://doi.org/10.1145/3324884.3416636

  • Jin W, Cai Y, Kazman R, Zhang G, Zheng Q and Liu T. Exploring the architectural impact of possible dependencies in Python software. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. (758-770).

    https://doi.org/10.1145/3324884.3416619

  • Wang S, Wen M, Lin B, Wu H, Qin Y, Zou D, Mao X and Jin H. Automated patch correctness assessment. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. (968-980).

    https://doi.org/10.1145/3324884.3416590

  • Asato M, Aman H, Amasaki S, Yokogawa T and Kawahara M. (2020). A Mahalanobis Distance-Based Integration of Suspicious Scores For Bug Localization 2020 27th Asia-Pacific Software Engineering Conference (APSEC). 10.1109/APSEC51365.2020.00059. 978-1-7281-9553-7. (475-479).

    https://ieeexplore.ieee.org/document/9359301/

  • Wen M, Wu R and Cheung S. How Well Do Change Sequences Predict Defects? Sequence Learning from Software Changes. IEEE Transactions on Software Engineering. 10.1109/TSE.2018.2876256. 46:11. (1155-1175).

    https://ieeexplore.ieee.org/document/8493303/

  • Amasaki S, Aman H and Yokogawa T. (2020). On the Effects of File-level Information on Method-level Bug Localization 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 10.1109/SEAA51224.2020.00059. 978-1-7281-9532-2. (314-321).

    https://ieeexplore.ieee.org/document/9226298/

  • Pradel M, Murali V, Qian R, Machalica M, Meijer E and Chandra S. Scaffle: bug localization on millions of files. Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. (225-236).

    https://doi.org/10.1145/3395363.3397356

  • Oliveira E, Fernandes E, Steinmacher I, Cristo M, Conte T and Garcia A. (2020). Code and commit metrics of developer productivity: a study on team leaders perceptions. Empirical Software Engineering. 10.1007/s10664-020-09820-z. 25:4. (2519-2549). Online publication date: 1-Jul-2020.

    https://link.springer.com/10.1007/s10664-020-09820-z

  • Wen M, Liu Y and Cheung S. Boosting automated program repair with bug-inducing commits. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results. (77-80).

    https://doi.org/10.1145/3377816.3381743

  • Guo Z, Li Y, Ma W, Zhou Y, Lu H, Chen L and Xu B. (2020). Boosting crash-inducing change localization with rank-performance-based feature subset selection. Empirical Software Engineering. 25:3. (1905-1950). Online publication date: 1-May-2020.

    https://doi.org/10.1007/s10664-020-09802-1

  • Koyuncu A, Liu K, Bissyandé T, Kim D, Klein J, Monperrus M and Le Traon Y. (2020). FixMiner: Mining relevant fix patterns for automated program repair. Empirical Software Engineering. 25:3. (1980-2024). Online publication date: 1-May-2020.

    https://doi.org/10.1007/s10664-019-09780-z

  • Chaparro O, Florez J and Marcus A. (2019). Using bug descriptions to reformulate queries during text-retrieval-based bug localization. Empirical Software Engineering. 24:5. (2947-3007). Online publication date: 1-Oct-2019.

    https://doi.org/10.1007/s10664-018-9672-z

  • Rahman M, Chakraborty S, Kaiser G and Ray B. (2019). Toward Optimal Selection of Information Retrieval Models for Software Engineering Tasks 2019 IEEE 19th International Working Conference on Source Code Analysis and Manipulation (SCAM). 10.1109/SCAM.2019.00022. 978-1-7281-4937-0. (127-138).

    https://ieeexplore.ieee.org/document/8930841/

  • Rath M and Mäder P. (2019). Structured information in bug report descriptions—influence on IR-based bug localization and developers. Software Quality Journal. 27:3. (1315-1337). Online publication date: 1-Sep-2019.

    https://doi.org/10.1007/s11219-019-09445-6

  • Wen M, Wu R, Liu Y, Tian Y, Xie X, Cheung S and Su Z. Exploring and exploiting the correlations between bug-inducing and bug-fixing commits. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (326-337).

    https://doi.org/10.1145/3338906.3338962

  • Koyuncu A, Liu K, Bissyandé T, Kim D, Monperrus M, Klein J and Le Traon Y. iFixR: bug report driven program repair. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (314-325).

    https://doi.org/10.1145/3338906.3338935

  • Reis S, Abreu R and D'Amorim M. Demystifying the combination of dynamic slicing and spectrum-based fault localization. Proceedings of the 28th International Joint Conference on Artificial Intelligence. (4760-4766).

    /doi/10.5555/3367471.3367705

  • Amasaki S, Aman H and Yokogawa T. (2019). A Comparative Study of Vectorization Methods on BugLocator 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 10.1109/SEAA.2019.00045. 978-1-7281-3421-5. (236-243).

    https://ieeexplore.ieee.org/document/8906763/

  • Wang Y, Wen M, Wu R, Liu Z, Tan S, Zhu Z, Yu H and Cheung S. Could I have a stack trace to examine the dependency conflict issue?. Proceedings of the 41st International Conference on Software Engineering. (572-583).

    https://doi.org/10.1109/ICSE.2019.00068

  • Safdari N, Alrubaye H, Aljedaani W, Baez Baez B, DiStasi A, Mkaouer M and Ahmad F. (2019). Learning to rank faulty source files for dependent bug reports Big Data: Learning, Analytics, and Applications. 10.1117/12.2519226. 9781510626430. (10).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10989/2519226/Learning-to-rank-faulty-source-files-for-dependent-bug-reports/10.1117/12.2519226.full

  • Kim M and Lee E. A novel approach to automatic query reformulation for IR-based bug localization. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. (1752-1759).

    https://doi.org/10.1145/3297280.3297451

  • Horvath F, Lacerda V, Beszedes A, Vidacs L and Gyimothy T. (2019). A New Interactive Fault Localization Method with Context Aware User Feedback 2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF). 10.1109/IBF.2019.8665415. 978-1-7281-1809-3. (23-28).

    https://ieeexplore.ieee.org/document/8665415/

  • Sadiq A, Kabir A, Akash P and Ibna Mostafa M. (2019). Analyzing Corrective Maintenance using Change Coupled Clusters at Fix-inducing Changes 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). 10.1109/ECACE.2019.8679503. 978-1-5386-9111-3. (1-6).

    https://ieeexplore.ieee.org/document/8679503/

  • Tamanna and Sangwan O. (2019). Review of Text Mining Techniques for Software Bug Localization 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). 10.1109/CONFLUENCE.2019.8776959. 978-1-5386-5933-5. (208-211).

    https://ieeexplore.ieee.org/document/8776959/

  • Sun X, Zhou W, Li B, Ni Z and Lu J. Bug Localization for Version Issues With Defect Patterns. IEEE Access. 10.1109/ACCESS.2019.2894976. 7. (18811-18820).

    https://ieeexplore.ieee.org/document/8625380/

  • Rahman M and Roy C. Improving IR-based bug localization with context-aware query reformulation. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (621-632).

    https://doi.org/10.1145/3236024.3236065

  • Wang Y, Wen M, Liu Z, Wu R, Wang R, Yang B, Yu H, Zhu Z and Cheung S. Do the dependency conflicts in my project matter?. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (319-330).

    https://doi.org/10.1145/3236024.3236056

  • Loyola P, Gajananan K and Satoh F. Bug Localization by Learning to Rank and Represent Bug Inducing Changes. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (657-665).

    https://doi.org/10.1145/3269206.3271811

  • Rodríguez-Pérez G, Zaidman A, Serebrenik A, Robles G and González-Barahona J. What if a bug has a different origin?. Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. (1-4).

    https://doi.org/10.1145/3239235.3267436

  • Wu R, Wen M, Cheung S and Zhang H. (2018). ChangeLocator. Empirical Software Engineering. 23:5. (2866-2900). Online publication date: 1-Oct-2018.

    https://doi.org/10.1007/s10664-017-9567-4

  • Huang Q, Xia X, Xing Z, Lo D and Wang X. API method recommendation without worrying about the task-API knowledge gap. Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. (293-304).

    https://doi.org/10.1145/3238147.3238191

  • Liu X, Huang L, Li C and Ng V. (2018). Linking Source Code to Untangled Change Intents 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME.2018.00047. 978-1-5386-7870-1. (393-403).

    https://ieeexplore.ieee.org/document/8530046/

  • Rath M and Mader P. (2018). Influence of Structured Information in Bug Report Descriptions on IR-Based Bug Localization 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 10.1109/SEAA.2018.00014. 978-1-5386-7383-6. (26-32).

    https://ieeexplore.ieee.org/document/8498181/

  • Lee J, Kim D, Bissyandé T, Jung W and Le Traon Y. Bench4BL: reproducibility study on the performance of IR-based bug localization. Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. (61-72).

    https://doi.org/10.1145/3213846.3213856

  • Rath M, Lo D and Mäder P. Analyzing requirements and traceability information to improve bug localization. Proceedings of the 15th International Conference on Mining Software Repositories. (442-453).

    https://doi.org/10.1145/3196398.3196415

  • Wen M, Chen J, Wu R, Hao D and Cheung S. Context-aware patch generation for better automated program repair. Proceedings of the 40th International Conference on Software Engineering. (1-11).

    https://doi.org/10.1145/3180155.3180233

  • Ang A, Perez A, Van Deursen A and Abreu R. (2017). Revisiting the Practical Use of Automated Software Fault Localization Techniques 2017 IEEE 28th International Symposium on Software Reliability Engineering: Workshops (ISSREW). 10.1109/ISSREW.2017.68. 978-1-5386-2387-9. (175-182).

    https://ieeexplore.ieee.org/document/8109281/

  • Huang Q, Lo D, Xia X, Wang Q and Li S. (2017). Which Packages Would be Affected by This Bug Report? 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE.2017.24. 978-1-5386-0941-5. (124-135).

    http://ieeexplore.ieee.org/document/8109079/

  • Wei L, Liu Y and Cheung S. OASIS: prioritizing static analysis warnings for Android apps based on app user reviews. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. (672-682).

    https://doi.org/10.1145/3106237.3106294

  • Ziftci C and Reardon J. Who broke the build?. Proceedings of the 39th International Conference on Software Engineering: Software Engineering in Practice Track. (113-122).

    https://doi.org/10.1109/ICSE-SEIP.2017.13

  • Li X, Chang N, Wang Y, Huang H, Pei Y, Wang L and Li X. (2017). ATOM: Automatic Maintenance of GUI Test Scripts for Evolving Mobile Applications 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). 10.1109/ICST.2017.22. 978-1-5090-6031-3. (161-171).

    http://ieeexplore.ieee.org/document/7927972/